1,432 research outputs found

    Stretching of the toroidal field and generation of magnetosonic waves in differentially rotating plasma

    Full text link
    We evaluate the generation of magnetosonic waves in differentially rotating magnetized plasma. Differential rotation leads to an increase of the azimuthal field by winding up the poloidal field lines into the toroidal field lines. An amplification of weak seed perturbations is considered in this time-dependent background state. It is shown that seed perturbations can be amplified by several orders of magnitude in a differentially rotating flow. The only necessary condition for this amplification is the presence of a non-vanishing component of the magnetic field in the direction of the angular velocity gradient.Comment: 5 pages, 5 figure

    The neutron star in Cassiopeia A: equation of state, superfluidity, and Joule heating

    Full text link
    The thermomagnetic evolution of the young neutron star in Cassiopea A is studied by considering fast neutrino emission processes. In particular, we consider neutron star models obtained from the equation of state computed in the framework of the Brueckner-Bethe-Goldstone many-body theory and variational methods, and models obtained with the Akmal-Pandharipande-Ravenhall equation of state. It is shown that it is possible to explain a fast cooling regime as the one observed in the neutron star in Cassiopea A if the Joule heating produced by dissipation of the small-scale magnetic field in the crust is taken into account. We thus argue that it is difficult to put severe constraints on the superfluid gap if the Joule heating is considered.Comment: 4 pages, 2 figures, to appear on A&A Letter

    A Class of Renormalization Group Invariant Scalar Field Cosmologies

    Full text link
    We present a class of scalar field cosmologies with a dynamically evolving Newton parameter GG and cosmological term Λ\Lambda. In particular, we discuss a class of solutions which are consistent with a renormalization group scaling for GG and Λ\Lambda near a fixed point. Moreover, we propose a modified action for gravity which includes the effective running of GG and Λ\Lambda near the fixed point. A proper understanding of the associated variational problem is obtained upon considering the four-dimensional gradient of the Newton parameter.Comment: 10 pages, RevTex4, no figures, to appear on GR

    Renormalization Group in Quantum Mechanics

    Get PDF
    We establish the renormalization group equation for the running action in the context of a one quantum particle system. This equation is deduced by integrating each fourier mode after the other in the path integral formalism. It is free of the well known pathologies which appear in quantum field theory due to the sharp cutoff. We show that for an arbitrary background path the usual local form of the action is not preserved by the flow. To cure this problem we consider a more general action than usual which is stable by the renormalization group flow. It allows us to obtain a new consistent renormalization group equation for the action.Comment: 20 page

    Recurrence and algorithmic information

    Full text link
    In this paper we initiate a somewhat detailed investigation of the relationships between quantitative recurrence indicators and algorithmic complexity of orbits in weakly chaotic dynamical systems. We mainly focus on examples.Comment: 26 pages, no figure

    Protoneutron star dynamos and pulsar magnetism

    Full text link
    We have investigated the turbulent mean-field dynamo action in protoneutron stars that are subject to convective and neutron finger instabilities during the early evolutionary phase. While the first one develops mostly in the inner regions of the star, the second one is favored in the outer regions, where the Rossby number is much smaller and a mean-field dynamo action is more efficient. By solving the mean-field induction equation we have computed the critical spin period below which no dynamo action is possible and found it to be ∌1\sim 1 s for a wide range of stellar models and for both axisymmetric and non-axisymmetric magnetic fields. Because this critical period is substantially longer than the characteristic spin period of very young pulsars, we expect that a mean-field dynamo will be effective for most protoneutron stars. The saturation dipole field estimated by making use of the model of ``global'' quenching fits well the pulsar magnetic fields inferred from the spin-down data. Apart from the large scale magnetic field, our model predicts also a generation of small scale fields which are typically stronger than the poloidal field and can survive during the lifetime of pulsars. Extremely rapidly rotating protoneutron stars (P∌1P \sim 1 ms) may have the dipole field ∌(3−6)×1014\sim (3-6) \times 10^{14} G.Comment: 7 pages, 6 figures, to appear on A&

    The Universe With Bulk Viscosity

    Get PDF
    Exact solutions for a model with variable GG, Λ\Lambda and bulk viscosity are obtained. Inflationary solutions with constant (de Sitter-type) and variable energy density are found. An expanding anisotropic universe is found to isotropize during its course of expansion but a static universe is not. The gravitational constant is found to increase with time and the cosmological constant decreases with time as Λ∝t−2\Lambda \propto t^{-2}.Comment: 7 LateX pages, no figure

    Comment on "Feynman Effective Classical Potential in the Schrodinger Formulation"

    Full text link
    We comment on the paper "Feynman Effective Classical Potential in the Schrodinger Formulation"[Phys. Rev. Lett. 81, 3303 (1998)]. We show that the results in this paper about the time evolution of a wave packet in a double well potential can be properly explained by resorting to a variational principle for the effective action. A way to improve on these results is also discussed.Comment: 1 page, 2eps figures, Revte
    • 

    corecore