8 research outputs found

    Unraveling functional significance of natural variations of a human galectin by glycodendrimersomes with programmable glycan surface

    No full text
    Surface-presented glycans (complex carbohydrates) are docking sites for adhesion/growth-regulatory galectins within cell-cell/ matrix interactions. Alteration of the linker length in human galectin-8 and single-site mutation (F19Y) are used herein to illustrate the potential of glycodendrimersomes with programmable glycan displays as a model system to reveal the functional impact of natural sequence variations in trans recognition. Extension of the linker length slightly reduces lectin capacity as agglutinin and slows down aggregate formation at low ligand surface density. The mutant protein is considerably less active as agglutinin and less sensitive to low-level ligand presentation. The present results suggest that mimicking glycan complexity and microdomain occurrence on the glycodendrimersome surface can provide key insights into mechanisms to accomplish natural selectivity and specificity of lectins in structural and topological terms. adhesion | agglutination | glycobiology | membrane mimic | self-assembl

    Reaction of a programmable glycan presentation of glycodendrimersomes and cells with engineered human lectins to show the sugar functionality of the cell surface

    No full text
    Chemical and biological tools are harnessed to investigate the impact of spatial factors for functional pairing of human lectins with counterreceptors. The homodimeric adhesion/growth‐regulatory galectin‐1 and a set of covalently linked homo‐oligomers from di‐ to tetramers serve as proof‐of‐principle test cases. Glycodendrimersomes provide a versatile and sensitive diagnostic platform to reveal thresholds for ligand density and protein concentration in aggregation assays (trans‐activity), irrespective of linker length between lectin domains. Monitoring the affinity of cell binding and ensuing tumor growth inhibition reveal the linker length to be a bidirectional switch for cis‐activity. The discovery that two aspects of lectin functionality (trans‐ versus cis‐activity) respond non‐uniformly to a structural change underscores the power of combining synthetic and biological tools to advance understanding of the sugar functionality of the cell surface

    Intra- and inter-molecular interactions of human galectin-3: assessment by full-assignment-based NMR.

    No full text
    Galectin-3 is an adhesion/growth-regulatory protein with a modular design comprising an N-terminal tail (NT, residues 1-111) and the conserved carbohydrate recognition domain (CRD, residues 112-250). The chimera-type galectin interacts with both glycan and peptide motifs. Complete (13)C/(15)N-assignment of the human protein makes NMR-based analysis of its structure beyond the CRD possible. Using two synthetic NT polypeptides covering residues 1-50 and 51-107, evidence for transient secondary structure was found with helical conformation from residues 5 to 15 as well as proline-mediated, multi-turn structure from residues 18 to 32 and around PGAYP repeats. Intramolecular interactions occur between the CRD F-face (the 5-stranded β-sheet behind the canonical carbohydrate-binding 6-stranded β-sheet of the S-face) and NT in full-length galectin-3, with the sequence P(23)GAW(26) … P(37)GASYPGAY(45) defining the primary binding epitope within the NT. Work with designed peptides indicates that the PGAX motif is crucial for self-interactions between NT/CRD. Phosphorylation at position Ser6 (and Ser12) (a physiological modification) and the influence of ligand binding have minimal effect on this interaction. Lastly, galectin-3 molecules can interact weakly with each other via the F-faces of their CRDs, an interaction that appears to be assisted by their NTs. Overall, our results add insight to defining binding sites on galectin-3 beyond the canonical contact area for β-galactosides

    Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes

    Get PDF
    Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity
    corecore