25 research outputs found

    Selective Protein Synthesis by Ribosomes with a Drug-Obstructed Exit Tunnel

    Get PDF
    SummaryThe polypeptide exit tunnel is an important functional compartment of the ribosome where the newly synthesized proteins are surveyed. The tunnel is the target of clinically important macrolide antibiotics. Macrolides plug the tunnel and are believed to stop production of all proteins. Contrary to this view, we show that drug-bound ribosomes can synthesize a distinct subset of cellular polypeptides. The structure of a protein defines its ability to thread through the antibiotic-obstructed tunnel. Synthesis of certain polypeptides that initially bypass translational arrest can be stopped at later stages of elongation while translation of some proteins goes to completion. Our findings reveal that small-molecule effectors can accentuate the discriminatory properties of the ribosomal exit tunnel and that macrolide antibiotics reshape the cellular proteome rather than block global protein synthesis

    Increased Persistence in Escherichia coli Caused by Controlled Expression of Toxins or Other Unrelated Proteins

    No full text
    Bacterial populations contain persisters, cells which survive exposure to bactericidal antibiotics and other lethal factors. Persisters do not have a genetic resistance mechanism, and their means to tolerate killing remain unknown. In exponentially growing populations of Escherichia coli the frequency of persister formation usually is 10(−7) to 10(−5). It has been shown that cells overexpressing either of the toxic proteins HipA and RelE, both members of the bacterial toxin-antitoxin (TA) modules, have the ability to form more persisters, suggesting a specific role for these toxins in the mechanism of persistence. However, here we show that cells expressing proteins that are unrelated to TA modules but which become toxic when ectopically expressed, chaperone DnaJ and protein PmrC of Salmonella enterica, also form 100- to 1,000-fold more persisters. Thus, persistence is linked not only to toxicity caused by expression of HipA or dedicated toxins but also to expression of other unrelated proteins

    Isolation of Antibiotic Hypersusceptibility Mutants of Acinetobacter spp. by Selection for DNA Release

    No full text
    Isolation of bacterial mutants hypersusceptible to antibiotics can reveal novel targets for antibiotic potentiators. However, identification of such mutants is a difficult task which normally requires laborious replica plating of thousands of colonies. The technique proposed here allows for the positive selection of genetic knockout mutants leading to hypersusceptibility. This technique, designated SDR (selection for DNA release), involves introduction of random insertions of a marker gene into the chromosome of a highly transformable bacterial species, followed by treatment of the obtained library with an antibiotic at subinhibitory concentrations. DNA released by lysing bacteria is collected and used to transform fresh bacteria, selecting for insertion of the marker gene. These selection cycles are repeated until variants with a hypersusceptibility phenotype caused by insertion of the marker begin to dominate in the library. This approach allowed for isolation of a number of mutants of the gram-negative opportunistic pathogen Acinetobacter sp. susceptible to 4- to 16-times-lower concentrations of ampicillin than wild-type bacteria. The mutations affected proteins involved in peptidoglycan turnover and, surprisingly, proteins involved in exopolysaccharide production. A further modification of the SDR technique is described which allows for selecting mutants hypersensitive to agents that affect bacterial physiology but do not cause cell lysis, e.g., inhibitors of translation. This application of SDR is illustrated here by identification of several mutants of Acinetobacter sp. with increased susceptibility (two- to fivefold decrease in the MIC) to erythromycin. The same technique can be used to identify prospective targets for potentiators of many other antibacterial agents

    Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size

    No full text
    Macrolide antibiotic binding to the ribosome inhibits catalysis of peptide bond formation between specific donor and acceptor substrates. Why particular reactions are problematic for the macrolide-bound ribosome remains unclear. Using comprehensive mutational analysis and biochemical experiments with synthetic substrate analogs, we find that the positive charge of these specific residues and the length of their side chains underlie inefficient peptide bond formation in the macrolide-bound ribosome. Even in the absence of antibiotic, peptide bond formation between these particular donors and acceptors is rather inefficient, suggesting that macrolides magnify a problem present for intrinsically difficult substrates. Our findings emphasize the existence of functional interactions between the nascent protein and the catalytic site of the ribosomal peptidyl transferase center

    Context-based sensing of orthosomycin antibiotics by the translating ribosome

    No full text
    Orthosomycin antibiotics inhibit protein synthesis by binding to the large ribosomal subunit in the tRNA accommodation corridor, which is traversed by incoming aminoacyl-tRNAs. Structural and biochemical studies suggested that orthosomycins block accommodation of any aminoacyl-tRNAs in the ribosomal A-site. However, the mode of action of orthosomycins in vivo remained unknown. Here, by carrying out genome-wide analysis of antibiotic action in bacterial cells, we discovered that orthosomycins primarily inhibit the ribosomes engaged in translation of specific amino acid sequences. Our results reveal that the predominant sites of orthosomycin-induced translation arrest are defined by the nature of the incoming aminoacyl-tRNA and likely by the identity of the two C-terminal amino acid residues of the nascent protein. We show that nature exploits this antibiotic-sensing mechanism for directing programmed ribosome stalling within the regulatory open reading frame, which may control expression of an orthosomycin-resistance gene in a variety of bacterial species

    Context-specific action of macrolide antibiotics on the eukaryotic ribosome

    Get PDF
    Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells
    corecore