543 research outputs found

    Chemical potential of quasi-equilibrium magnon gas driven by pure spin current

    Full text link
    We show experimentally that the spin current generated by the spin Hall effect drives the magnon gas in a ferromagnet into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation

    Dynamical evolution of asteroid pairs with close orbits

    Full text link
    Dynamical evolution of paired asteroids sharing close orbits was investigated. Candidates were chosen from AstDyS database by Kholshevnikov metric value. Only 33 of 105 pairs with close orbits were associated as family members. Further orbit evolution modeling was performed by Orbit9 software. Each pair had 49 overall model scenarios due to different Yarkovsky drift values for semimajor axis. Close encounters between paired objects providing time estimations and feasible mechanisms of formation were evaluated. Uncertainties of Yarkovsky drift values affected orbit evolution and caused substantial distinctions in time formation evaluating. Dwarf planet Ceres and massive asteroids (Pallas, Vesta, etc.) perturbations should be taken into account and dynamical evolution research for asteroid pairs in close orbits under passing through resonances is considered in future numerical simulations. © 2019 Author(s).The reported study was funded by RFBR according to the research project no. 18-02-00015

    Nonlinear Seebeck Effect in a Model Granular Superconductor

    Full text link
    The change of the Josephson supercurrent density of a weakly-connected granular superconductor in response to externally applied arbitrary thermal gradient dT/dx (nonlinear Seebeck effect) is considered within a model of 3D Josephson junction arrays. For dT/dx>(dT/dx)_c, where (dT/dx)_c is estimated to be of the order of 10^4 K/m for YBCO ceramics with an average grain's size of 10 microns, the weak-links-dominated thermopower S (Seebeck coefficient) is predicted to become strongly dT/dx-dependent.Comment: REVTEX, no figure

    Dynamics of An Underdamped Josephson Junction Ladder

    Full text link
    We show analytically that the dynamical equations for an underdamped ladder of coupled small Josephson junctions can be approximately reduced to the discrete sine-Gordon equation. As numerical confirmation, we solve the coupled Josephson equations for such a ladder in a magnetic field. We obtain discrete-sine-Gordon-like IV characteristics, including a flux flow and a ``whirling'' regime at low and high currents, and voltage steps which represent a lock-in between the vortex motion and linear ``phasons'', and which are quantitatively predicted by a simple formula. At sufficiently high anisotropy, the fluxons on the steps propagate ballistically.Comment: 11pages, latex, no figure

    Optical Spin Orientation under Inter- and Intra-Subband Transitions in QWs

    Get PDF
    It is shown that absorption of circularly polarized infrared radiation achieved by inter-subband and intra-subband (Drude-like) transitions results in a monopolar spin orientation of free carriers. The monopolar spin polarization in zinc-blende-based quantum wells (QWs) is demonstrated by the observation of the spin-galvanic and circular photogalvanic effects. It is shown that monopolar spin orientation in n-type QWs becomes possible if an admixture of valence band states to the conduction band wave function and the spin-orbit splitting of the valence band are taken into account

    Dynamics and transformations of Josephson vortex lattice in layered superconductors

    Full text link
    We consider dynamics of Josephson vortex lattice in layered superconductors with magnetic, charge (electrostatic) and charge-imbalance (quasiparticle) interactions between interlayer Josephson junctions taken into account. The macroscopic dynamical equations for interlayer Josephson phase differences, intralayer charge and electron-hole imbalance are obtained and used for numerical simulations. Different transformations of the vortex lattice structure are observed. It is shown that the additional dissipation due to the charge imbalance relaxation leads to the stability of triangular lattice.Comment: 9 pages, 3 eps figures, to be published in Phys. Rev.

    Aluminum Hard Mask Technique for the Fabrication of High-Quality Submicron Nb/Al-AlOx/Nb Josephson Junctions

    Full text link
    We have developed a combined photolithography and electron-beam lithography fabrication process for sub-\mum to \mum-size Nb/Al-AlOx/Nb Josephson junctions. In order to define the junction size and protect its top electrode during anodic oxidation, we developed and used the new concept of an aluminum hard mask. Josephson junctions of sizes down to 0.5 \mum2 have been fabricated and thoroughly characterized. We found that they have a very high quality, which is witnessed by the IV curves with quality parameters Vm > 50 mV and Vgap = 2.8 mV at 4.2 K, as well as IcRN products of 1.75-1.93 mV obtained at lower temperatures. In order to test the usability of our fabrication process for superconducting quantum bits, we have also designed, fabricated and experimentally investigated phase qubits made of these junctions. We found a relaxation time of T1 = 26 ns and a dephasing time of T2 = 21 ns
    corecore