8 research outputs found

    Nonlinear Switching Dynamics in a Nanomechanical Resonator

    Full text link
    The oscillatory response of nonlinear systems exhibits characteristic phenomena such as multistability, discontinuous jumps and hysteresis. These can be utilized in applications leading, e.g., to precise frequency measurement, mixing, memory elements, reduced noise characteristics in an oscillator or signal amplification. Approaching the quantum regime, concepts have been proposed that enable low backaction measurement techniques or facilitate the visualisation of quantum mechanical effects. Here we study the dynamic response of nanoelectromechanical resonators in the nonlinear regime aiming at a more detailed understanding and an exploitation for switching applications. Whereas most previous investigations concentrated on dynamic phenomena arising at the onset of bistability, we present experiments that yield insight into the non-adiabatic evolution of the system while subjected to strong driving pulses and the subsequent relaxation. Modeling the behaviour quantitatively with a Duffing oscillator, we can control switching between its two stable states at high speeds, exceeding recently demonstrated results by 10,000

    Sensing distant nuclear spins with a single electron spin

    Full text link
    We experimentally demonstrate the use of a single electronic spin to measure the quantum dynamics of distant individual nuclear spins from within a surrounding spin bath. Our technique exploits coherent control of the electron spin, allowing us to isolate and monitor nuclear spins weakly coupled to the electron spin. Specifically, we detect the evolution of distant individual carbon-13 nuclear spins coupled to single nitrogen vacancy centers in a diamond lattice with hyperfine couplings down to a factor of 8 below the electronic spin bare dephasing rate. Potential applications to nanoscale magnetic resonance imaging and quantum information processing are discussed.Comment: Corrected typos, updated references. 5 pages, 4 figures, and supplemental materia

    Universal transduction scheme for nanomechanical systems based on dielectric forces

    No full text
    Any polarizable body placed in an inhomogeneous electric field experiences a dielectric force. This phenomenon is well known from the macroscopic world: a water jet is deflected when approached by a charged object. This fundamental mechanism is exploited in a variety of contexts—for example, trapping microscopic particles in an optical tweezer1, where the trapping force is controlled via the intensity of a laser beam, or dielectrophoresis2, where electric fields are used to manipulate particles in liquids. Here we extend the underlying concept to the rapidly evolving field of nanoelectromechanical systems3, 4 (NEMS). A broad range of possible applications are anticipated for these systems5, 6, 7, but drive and detection schemes for nanomechanical motion still need to be optimized8, 9. Our approach is based on the application of dielectric gradient forces for the controlled and local transduction of NEMS. Using a set of on-chip electrodes to create an electric field gradient, we polarize a dielectric resonator and subject it to an attractive force that can be modulated at high frequencies. This universal actuation scheme is efficient, broadband and scalable. It also separates the driving scheme from the driven mechanical element, allowing for arbitrary polarizable materials and thus potentially ultralow dissipation NEMS10. In addition, it enables simple voltage tuning of the mechanical resonance over a wide frequency range, because the dielectric force depends strongly on the resonator–electrode separation. We use the modulation of the resonance frequency to demonstrate parametric actuation11, 12. Moreover, we reverse the actuation principle to realize dielectric detection, thus allowing universal transduction of NEMS. We expect this combination to be useful both in the study of fundamental principles and in applications such as signal processing and sensing

    Near-field cavity optomechanics with nanomechanical oscillators

    No full text
    Cavity-enhanced radiation-pressure coupling between optical and mechanical degrees of freedom allows quantum-limited position measurements and gives rise to dynamical backaction, enabling amplification and cooling of mechanical motion. Here, we demonstrate purely dispersive coupling of high-Q nanomechanical oscillators to an ultrahigh-finesse optical microresonator via its evanescent field, extending cavity optomechanics to nanomechanical oscillators. Dynamical backaction mediated by the optical dipole force is observed, leading to laser-like coherent nanomechanical oscillations solely due to radiation pressure. Moreover, sub-fm Hz−1/2 displacement sensitivity is achieved, with a measurement imprecision equal to the standard quantum limit (SQL), which coincides with the nanomechanical oscillator’s zero-point fluctuations. The achievement of an imprecision at the SQL and radiation-pressure dynamical backaction for nanomechanical oscillators may have implications not only for detecting quantum phenomena in mechanical systems, but also for a variety of other precision experiments. Owing to the flexibility of the near-field coupling platform, it can be readily extended to a diverse set of nanomechanical oscillators. In addition, the approach provides a route to experiments where radiation-pressure quantum backaction dominates at room temperature, enabling ponderomotive squeezing or quantum non-demolition measurements
    corecore