19 research outputs found

    Use of Electrochemical Oxidation and Model Peptides To Study Nucleophilic Biological Targets of Reactive Metabolites: The Case of Rimonabant

    No full text
    Electrochemical oxidation of drug molecules is a useful tool to generate several different types of metabolites. In the present study we developed a model system involving electrochemical oxidation followed by characterization of the oxidation products and their propensity to modify peptides. The CB1 antagonist rimonabant was chosen as the model drug. Rimonabant has previously been shown to give high covalent binding to proteins in human liver microsomes and hepatocytes and the iminium ion and/or the corresponding aminoaldehyde formed via P450 mediated α-carbon oxidation of rimonabant was proposed to be a likely contributor. This proposal was based on the observation that levels of covalent binding were significantly reduced when iminium species were trapped as cyanide adducts but also following addition of methoxylamine expected to trap aldehydes. Incubation of electrochemically oxidized rimonabant with peptides resulted in peptide adducts to the N-terminal amine with a mass increment of 64 Da. The adducts were shown to contain an addition of C<sub>5</sub>H<sub>4</sub> originating from the aminopiperidine moiety of rimonabant. Formation of the peptide adducts required further oxidation of the iminium ion to short-lived intermediates, such as dihydropyridinium species. In addition, the metabolites and peptide adducts generated in human liver microsomes were compared with those generated by electrochemistry. Interestingly, the same peptide modification was found when rimonabant was coincubated with one of the model peptides in microsomes. This clearly indicated that reactive metabolite(s) of rimonabant identical to electrochemically generated species are also present in the microsomal incubations. In summary, electrochemical oxidation combined with peptide trapping of reactive metabolites identified a previously unobserved bioactivation pathway of rimonabant that was not captured by traditional trapping agents and that may contribute to the <i>in vitro</i> covalent binding

    Significantly Different Covalent Binding of Oxidative Metabolites, Acyl Glucuronides, and S‑Acyl CoA Conjugates Formed from Xenobiotic Carboxylic Acids in Human Liver Microsomes

    No full text
    Xenobiotic carboxylic acids may be metabolized to oxidative metabolites, acyl glucuronides, and/or S-acyl-CoA thioesters (CoA conjugates) in vitro, e.g., in hepatocytes, and in vivo. These metabolites can potentially be reactive species and bind covalently to tissue proteins and are generally considered to mediate adverse drug reactions in humans. Acyl glucuronide metabolites have been the focus of reactive metabolite research for decades, whereas drug-CoA conjugates, which have been shown to be up to 40–70 times more reactive, have been given much less attention. In an attempt to dissect the contribution of different pathways to covalent binding, we utilized human liver microsomes supplemented with NADPH, uridine 5â€Č-diphosphoglucuronic acid (UDPGA), or CoA to evaluate the reactivity of each metabolite separately. Seven carboxylic acid drugs were included in this study. While ibuprofen and tolmetin are still on the market, ibufenac, fenclozic acid, tienilic acid, suprofen, and zomepirac were stopped before their launch or withdrawn. The reactivities of the CoA conjugates of ibuprofen, ibufenac, fenclozic acid, and tolmetin were higher compared to those of their corresponding oxidative metabolites and acyl glucuronides, as measured by the level of covalent binding to human liver microsomal proteins. The highest covalent binding was observed for ibuprofenyl-CoA and ibufenacyl-CoA, to levels of 1000 and 8600 pmol drug eq/mg protein, respectively. In contrast and in agreement with the proposed P450-mediated toxicity for these drug molecules, the reactivities of oxidative metabolites of suprofen and tienilic acid were higher compared to the reactivities of their conjugated metabolites, with NADPH-dependent covalent binding of 250 pmol drug eq/mg protein for both drugs. The seven drugs all formed UDPGA-dependent acyl glucuronides, but none of these resulted in covalent binding. This study shows that, unlike studies with hepatocytes or in vivo, human liver microsomes provide an opportunity to investigate the reactivity of individual metabolites

    Creating Novel Activated Factor XI Inhibitors through Fragment Based Lead Generation and Structure Aided Drug Design

    No full text
    <div><p>Activated factor XI (FXIa) inhibitors are anticipated to combine anticoagulant and profibrinolytic effects with a low bleeding risk. This motivated a structure aided fragment based lead generation campaign to create novel FXIa inhibitor leads. A virtual screen, based on docking experiments, was performed to generate a FXIa targeted fragment library for an NMR screen that resulted in the identification of fragments binding in the FXIa S1 binding pocket. The neutral 6-chloro-3,4-dihydro-1H-quinolin-2-one and the weakly basic quinolin-2-amine structures are novel FXIa P1 fragments. The expansion of these fragments towards the FXIa prime side binding sites was aided by solving the X-ray structures of reported FXIa inhibitors that we found to bind in the S1-S1’-S2’ FXIa binding pockets. Combining the X-ray structure information from the identified S1 binding 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment and the S1-S1’-S2’ binding reference compounds enabled structure guided linking and expansion work to achieve one of the most potent and selective FXIa inhibitors reported to date, compound 13, with a FXIa IC<sub>50</sub> of 1.0 nM. The hydrophilicity and large polar surface area of the potent S1-S1’-S2’ binding FXIa inhibitors compromised permeability. Initial work to expand the 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment towards the prime side to yield molecules with less hydrophilicity shows promise to afford potent, selective and orally bioavailable compounds.</p></div

    Nomenclature for FXIa substrates and corresponding binding sites.

    No full text
    <p>(A) FIX sequences that are substrates for FXIa. The scissile bonds cleaved by FXIa are marked with a red dashed line. Residues N- and C-terminal of the scissile bond are referred to as P1, P2 etc. and P1’, P2’ etc., respectively. (B) Depiction of FXIa active site in complex with FIXa substrate residues (from PDB entry 1XXD [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113705#pone.0113705.ref082" target="_blank">82</a>]). According to standard nomenclature, the substrate P1 residue binds the enzyme S1 site, the P1’ residue binds the S1’ site, and so on. The scissile bond is marked with a red dashed line.</p

    Synthesis of P1’-P2’ fragments.

    No full text
    <p>i) DCM, r.t, 16h, then LiOH, water, THF, r.t, 16h, then PPA, 120°C, 2h, ii) TBTU, DIPEA, DMF, L-phenylalanine methylester, r.t, 16h, iii) TBTU, pyridine, MeNH2xHCl, DMF, r.t, 16h, iv) TBTU, (S)-2-amino-N,N-dimethyl-3-phenylpropanamide hydrochloride, TEA, DMF, r.t, 16h, v) TBTU, TEA, DCM, DMF, r.t, 16h, vi) neat TFA, r.t, 0.5h.</p
    corecore