16 research outputs found

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    EGFR signal transactivation in cancer cells

    No full text

    Deletion mapping and linkage analysis provide strong indication for the involvement of the human chromosome region 8p12-p22 in breast carcinogenesis

    Get PDF
    We have identified a high frequency of loss of heterozygosity (LOH) on the human chromosome region 8p12-p22 in a panel of microdissected familial (86% LOH) and sporadic (74% LOH) breast tumours. The two most frequently deleted regions were defined around marker D8S133 and in a broader centromeric region bounded by markers D8S137 and D8S339. We cannot unequivocally characterize the 8p12-p22 loss as an early or a late event in breast carcinogenesis. In parallel, we have performed linkage analysis in four German breast cancer families. A location score greater than 13.67 corresponding to a LOD score of 2.97 at the marker D8S137 has been obtained. Our results considerably strengthen the evidence for a breast cancer susceptibility gene(s) located on the short arm of the chromosome region at 8p12-p22

    Epidermal Growth Factor Receptor Dependence of Radiation-induced Transcription Factor Activation in Human Breast Carcinoma Cells

    No full text
    Ionizing radiation (1–5 Gy) activates the epidermal growth factor receptor (EGFR), a major effector of the p42/44 mitogen-activated protein kinase (MAPK) pathway. MAPK and its downstream effector, p90 ribosomal S6 kinase (p90RSK), phosphorylate transcription factors involved in cell proliferation. To establish the role of the EGFR/MAPK pathway in radiation-induced transcription factor activation, MDA-MB-231 human breast carcinoma cells were examined using specific inhibitors of signaling pathways. Gel-shift analysis revealed three different profile groups: 1) transcription factors that responded to both radiation (2 Gy) and epidermal growth factor (EGF) (CREB, Egr, Ets, and Stat3); 2) factors that responded to radiation, but not EGF (C/EBP and Stat1); and 3) those that did not respond significantly to either radiation or EGF (AP-1 and Myc). Within groups 1 and 2, a two- to fivefold maximum stimulation of binding activity was observed at 30–60 min after irradiation. Interestingly, only transcription factors that responded to EGF had radiation responses significantly inhibited by the EGFR tyrosine kinase inhibitor, AG1478; these responses were also abrogated by farnesyltransferase inhibitor (FTI) or PD98059, inhibitors of Ras and MEK1/2, respectively. Moreover, radiation-induced increases in CREB and p90RSK phosphorylation and activation of Stat3 and Egr-1 reporter constructs by radiation were all abolished by AG1478. These data demonstrate a distinct radiation response profile at the transcriptional level that is dependent on enhanced EGFR/Ras/MAPK signaling
    corecore