58 research outputs found

    Downregulation of CD4 is required for maintenance of viral infectivity of HIV-1

    Get PDF
    AbstractDownregulation of virus receptors on the cell surface is considered to be important in preventing superinfection. HIV-1 encodes multiple gene products, Env, Vpu, and Nef, involved in downregulation of CD4, a major HIV-1 receptor. We found that simultaneous mutations in both vpu and nef severely impaired virus replication. We examined the involvement of CD4 downregulation mediated by Vpu and Nef in the modification of virus infectivity. The mutation in vpu increased CD4 incorporation into virions without affecting the Env content in it, inhibiting the attachment step of virions to the CD4-positive cell surface. Although a single mutation in nef suppresses virus infectivity via a CD4-independent mechanism, it could augment CD4 incorporation in virions in combination with a vpu mutation. These results indicated that CD4 downregulation was necessary for maintenance of Env function in the virion

    Epigenomic regulation of human T-cell leukemia virus by chromatin-insulator CTCF

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes an aggressive T-cell malignancy and a variety of inflammatory conditions. The integrated provirus includes a single binding site for the epigenomic insulator, CCCTC-binding protein (CTCF), but its function remains unclear. In the current study, a mutant virus was examined that eliminates the CTCF-binding site. The mutation did not disrupt the kinetics and levels of virus gene expression, or establishment of or reactivation from latency. However, the mutation disrupted the epigenetic barrier function, resulting in enhanced DNA CpG methylation downstream of the CTCF binding site on both strands of the integrated provirus and H3K4Me3, H3K36Me3, and H3K27Me3 chromatin modifications both up- and downstream of the site. A majority of clonal cell lines infected with wild type HTLV-1 exhibited increased plus strand gene expression with CTCF knockdown, while expression in mutant HTLV-1 clonal lines was unaffected. These findings indicate that CTCF binding regulates HTLV-1 gene expression, DNA and histone methylation in an integration site dependent fashion

    Two-photon microscopy analysis of leukocyte trafficking and motility

    Get PDF
    During the last several years, live tissue imaging, in particular using two-photon laser microscopy, has advanced our understanding of leukocyte trafficking mechanisms. Studies using this technique are revealing distinct molecular requirements for leukocyte migration in different tissue environments. Also emerging from the studies are the ingenious infrastructures for leukocyte trafficking, which are produced by stromal cells. This review summarizes the recent imaging studies that provided novel mechanistic insights into in vivo leukocyte migration essential for immunosurveillance

    Modulation of the Cell Division Cycle by Human Papillomavirus Type 18 E4

    No full text
    The life cycle of human papillomaviruses (HPVs) is tightly coupled to the differentiation program of their host epithelial cells. HPV E4 gene expression is first observed in the parabasal layers of squamous epithelia, suggesting that the E4 gene product contributes to the mechanism of differentiation-dependent virus replication, although its biological function remains unclear. We analyzed the effect of HPV type 18 E4 on cell proliferation and found that E4 expression induced cell cycle arrest at the G(2)/M boundary. The functional region of E4 necessary for the growth arrest activity was located in the central portion of the molecule, and this activity was independent of the E4-mediated collapse of cytokeratin intermediate filament structures

    Carrier model of HTLV-1 infection in humanized NOG mice

    No full text
    • …
    corecore