22 research outputs found

    Agmatine co-treatment attenuates allodynia and structural abnormalities in cisplatin-induced neuropathy in rats

    No full text
    Cisplatin is a widely used antineoplastic agent in the treatment of various cancers. Peripheral neuropathy is a well-known side effect of cisplatin and has potential to result in limiting and/or reducing the dose, decreasing the quality of life. Thus, effective treatments are needed. Agmatine is an endogenous neuromodulator that has been shown to exert antiallodynic effects in various animal studies. The first aim of this study was to investigate the invitro effects of agmatine on cisplatin-induced neurotoxicity. Primary cultures of dorsal root ganglia (DRG) which are the primary target of drug injury were prepared. DRG cells were incubated with cisplatin (100, 200, 500m). Then, agmatine (10, 100, 500m) was administered with the submaximal concentration of cisplatin. Cisplatin caused concentration-dependent neurotoxicity, and agmatine did not alter this effect. The second aim was to investigate the effects of agmatine on cisplatin-induced peripheral neuropathy in rats and the influence of nitric oxide synthase (NOS) inhibitor, L-NAME, in this effect. Female Sprague Dawley rats received intraperitoneal saline (control), cisplatin (3mg/kg), cisplatin+agmatine (100mg/kg), or cisplatin+agmatine+L-NAME (10mg/kg) once a week for 5weeks. The mechanical allodynia, hot plate, and tail clip tests were performed, and DRG cells and sciatic nerves were analyzed. Agmatine and agmatine+L-NAME combination attenuated CIS-induced mechanical allodynia and degeneration in DRG cells and sciatic nerves. However, L-NAME did not potentiate the antiallodynic or neuroprotective effect of agmatine. These findings indicate that agmatine co-administration ameliorates cisplatin-induced neuropathy and may be a therapeutic alternative

    NMDA Receptor-Dependent Refinement of Somatotopic Maps

    Get PDF
    AbstractWe have examined the role of NMDA receptor–mediated neural activity in the formation of periphery-related somatosensory patterns, using genetically engineered mice. We demonstrate that ectopic expression of a transgene of an NMDAR1 splice variant rescues neonatally fatal NMDAR1 knockout (KO) mice, although the average life span varies depending on the level of the transgene expression. In NMDAR1 KO mice with “high” levels of the transgene expression, sensory periphery-related patterns were normal along both the trigeminal and dorsal column pathways. In the KO mice with “low” levels of the transgene expression, the patterns were absent in the trigeminal pathway. Our results indicate that NMDA receptor–mediated neural activity plays a critical role in pattern formation along the ascending somatosensory pathways
    corecore