4,173 research outputs found
Dynamic Congruence vs. Progressing Bisimulation for CCS
Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does not require two states reached by bisimilar computations of woc agents to be still woc, e.g. \alpha.\tau.\beta.nil and \alpha.\beta.nil are woc but \tau.\beta.nil and \beta.nil are not. This fact prevent us from characterizing CCS semantics (when \tau is considered invisible) as a final algebra, since the semantic function would induce an equivalence over the agents that is both a congruence and a bisimulation. In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among those bisimulations which are also congruences. We call it Dynamic Observational Congruence because it expresses a natural notion of equivalence for concurrent systems required to simulate each other in the presence of dynamic, i.e. run time, (re)configurations. We provide an algebraic characterization of Dynamic Congruence in terms of a universal property of finality. Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other performing explicit steps. We provide an algebraic characterization of it in terms of finality, two logical characterizations via modal logic in the style of HML and a complete axiomatization for finite agents (consisting of the axioms for Strong Observational Congruence and of two of the three Milner's -laws). Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents
CCS Dynamic Bisimulation is Progressing
Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does not require two states reached by bisimilar computations of woc agents to be still woc, e.g.\ and are woc but and are not. This fact prevents us from characterizing CCS semantics (when is considered invisible) as a final algebra, since the semantic function would induce an equivalence over the agents that is both a congruence and a bisimulation. In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among those bisimulations which are also congruences. We call it Dynamic Observational Congruence because it expresses a natural notion of equivalence for concurrent systems required to simulate each other in the presence of dynamic, i.e.\ run time, (re)configurations. We provide an algebraic characterization of Dynamic Congruence in terms of a universal property of finality. Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other performing explicit steps. We provide an algebraic characterization of it in terms of finality, two characterizations via modal logic in the style of HML, and a complete axiomatization for finite agents. Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents. Thus the title of the paper
On the Semantics of Petri Nets
Petri Place/Transition (PT) nets are one of the most widely used models of concurrency. However, they still lack, in our view, a satisfactory semantics: on the one hand the "token game"' is too intensional, even in its more abstract interpretations in term of nonsequential processes and monoidal categories; on the other hand, Winskel's basic unfolding construction, which provides a coreflection between nets and finitary prime algebraic domains, works only for safe nets. In this paper we extend Winskel's result to PT nets. We start with a rather general category {PTNets} of PT nets, we introduce a category {DecOcc} of decorated (nondeterministic) occurrence nets and we define adjunctions between {PTNets} and {DecOcc} and between {DecOcc} and {Occ}, the category of occurrence nets. The role of {DecOcc} is to provide natural unfoldings for PT nets, i.e. acyclic safe nets where a notion of family is used for relating multiple instances of the same place. The unfolding functor from {PTNets} to {Occ} reduces to Winskel's when restricted to safe nets, while the standard coreflection between {Occ} and {Dom}, the category of finitary prime algebraic domains, when composed with the unfolding functor above, determines a chain of adjunctions between {PTNets} and {Dom}
ω-Inductive completion of monoidal categories and infinite petri net computations
There exists a KZ-doctrine on the 2-category of the locally small categories whose algebras are exactly the categories which admits all the colimits indexed by ω-chains. The paper presents a wide survey of this topic. In addition, we show that this chain cocompletion KZ-doctrine lifts smoothly to KZ-doctrines on (many variations of) the 2-categories of monoidal and symmetric monoidal categories, thus yielding a universal construction of colimits of ω-chains in those categories. Since the processes of Petri nets may be axiomatized in terms of symmetric monoidal categories this result provides a universal construction of the algebra of infinite processes of a Petri net
Representation Theorems for Petri Nets
This paper retraces, collects, summarises, and mildly extends the contributions of the authors --- both together and individually --- on the theme of representing the space of computations of Petri nets in its mathematical essence
On the Model of Computation of Place/Transition Petri Nets
In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game", one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. More precisely, we introduce the new notion of decorated processes of Petri nets and we show that they induce on nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net N can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification
Functorial Semantics for Petri Nets under the Individual Token Philosophy
Although the algebraic semantics of place/transition Petri nets under the collective token philosophy has been fully explained in terms of (strictly) symmetric (strict) monoidal categories, the analogous construction under the individual token philosophy is not completely satisfactory because it lacks universality and also functoriality. We introduce the notion of pre-net to recover these aspects, obtaining a fully satisfactory categorical treatment centered on the notion of adjunction. This allows us to present a purely logical description of net behaviours under the individual token philosophy in terms of theories and theory morphisms in partial membership equational logic, yielding a complete match with the theory developed by the authors for the collective token view of net
Bayesian network semantics for Petri nets
Recent work by the authors equips Petri occurrence nets (PN) with probability distributions which fully replace nondeterminism. To avoid the so-called confusion problem, the construction imposes additional causal dependencies which restrict choices within certain subnets called structural branching cells (s-cells). Bayesian nets (BN) are usually structured as partial orders where nodes define conditional probability distributions. In the paper, we unify the two structures in terms of Symmetric Monoidal Categories (SMC), so that we can apply to PN ordinary analysis techniques developed for BN. Interestingly, it turns out that PN which cannot be SMC-decomposed are exactly s-cells. This result confirms the importance for Petri nets of both SMC and s-cells
Algebras for Tree Decomposable Graphs
Complex problems can be sometimes solved efficiently via recursive decomposition strategies. In this line, the tree decomposition approach equips problems modelled as graphs with tree-like parsing structures. Following Milner’s flowgraph algebra, in a previous paper two of the authors introduced a strong network algebra to represent open graphs (up to isomorphism), so that homomorphic properties of open graphs can be computed via structural recursion. This paper extends this graphical-algebraic foundation to tree decomposable graphs. The correspondence is shown: (i) on the algebraic side by a loose network algebra, which relaxes the restriction reordering and scope extension axioms of the strong one; and (ii) on the graphical side by Milner’s binding bigraphs, and elementary tree decompositions. Conveniently, an interpreted loose algebra gives the evaluation complexity of each graph decomposition. As a key contribution, we apply our results to dynamic programming (DP). The initial statement of the problem is transformed into a term (this is the secondary optimisation problem of DP). Noting that when the scope extension axiom is applied to reduce the scope of the restriction, then also the complexity is reduced (or not changed), only so-called canonical terms (in the loose algebra) are considered. Then, the canonical term is evaluated obtaining a solution which is locally optimal for complexity. Finding a global optimum remains an NP-hard problem
On the Semantics of Place/Transition Petri Nets
Place/Transition (PT) Petri nets are one of the most widely used models of concurrency. However, they still lack, in our view, a satisfactory semantics: on the one hand the 'token game' is too intensional, even in its more abstract interpretations in terms of nonsequential processes and monoidal categories; on the other hand, Winskel's basic unfolding construction, which provides a coreflection between nets and finitary prime algebraic domains, works only for safe nets. In this paper we extend Winskel's result to PT nets. We start with a rather general category PTNets of PT nets, we introduce a category DecOcc of decorated (nondeterministic) occurrence nets and we define adjunctions between PTNets and DecOcc and between DecOcc and Occ, the category of occurrence nets. The role of DecOcc is to provide natural unfoldings for PT nets, i.e., acyclic safe nets where a notion of family is used for relating multiple instances of the same place. The unfolding functor from PTNets to Occ reduces to Winskel's when restricted to safe nets; moreover, the standard coreflection between Occ and Dom, the category of finitary prime algebraic domains, when composed with the unfolding functor above, determines a chain of adjunctions between PTNets and Dom
- …