
Algebras for Tree Decomposable Graphs

Roberto Bruni1(B) , Ugo Montanari1 , and Matteo Sammartino2,3

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
{bruni,ugo}@di.unipi.it

2 Royal Holloway University of London, Egham, UK
matteo.sammartino@rhul.ac.uk

3 University College London, London, UK

Abstract. Complex problems can be sometimes solved efficiently via
recursive decomposition strategies. In this line, the tree decomposition
approach equips problems modelled as graphs with tree-like parsing
structures. Following Milner’s flowgraph algebra, in a previous paper two
of the authors introduced a strong network algebra to represent open
graphs (up to isomorphism), so that homomorphic properties of open
graphs can be computed via structural recursion. This paper extends this
graphical-algebraic foundation to tree decomposable graphs. The corre-
spondence is shown: (i) on the algebraic side by a loose network algebra,
which relaxes the restriction reordering and scope extension axioms of
the strong one; and (ii) on the graphical side by Milner’s binding bigraphs,
and elementary tree decompositions. Conveniently, an interpreted loose
algebra gives the evaluation complexity of each graph decomposition. As
a key contribution, we apply our results to dynamic programming (DP).
The initial statement of the problem is transformed into a term (this is
the secondary optimisation problem of DP). Noting that when the scope
extension axiom is applied to reduce the scope of the restriction, then
also the complexity is reduced (or not changed), only so-called canonical
terms (in the loose algebra) are considered. Then, the canonical term is
evaluated obtaining a solution which is locally optimal for complexity.
Finding a global optimum remains an NP-hard problem.

Keywords: Tree decomposition · Bigraphs · Graph algebras

1 Introduction

Many quite relevant complex graph problems become easy for specific classes of
graphs. Usually these graphs are equipped with a suitable recursive structure
which allows to compute the solution by problem reduction. The typical struc-
ture studied in the literature is tree decomposition [3,4,7,11,14,18]. Another
suggestive approach is to consider a hyperedge replacement grammar [5], where
the structure of a derived graph is its derivation tree.

Research supported by MIUR PRIN 201784YSZ5 ASPRA, by Univ. of Pisa
PRA 2018 66 DECLWARE, and by EPSRC Grant CLeVer (EP/S028641/1).

c© Springer Nature Switzerland AG 2020
F. Gadducci and T. Kehrer (Eds.): ICGT 2020, LNCS 12150, pp. 203–220, 2020.
https://doi.org/10.1007/978-3-030-51372-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51372-6_12&domain=pdf
http://orcid.org/0000-0002-7771-4154
http://orcid.org/0000-0002-6204-8670
http://orcid.org/0000-0003-1456-2242
https://doi.org/10.1007/978-3-030-51372-6_12

204 R. Bruni et al.

In [17], a strong network algebra, called Soft Constraint Evaluation Problems
(SCEP), is introduced (see also [12]). The algebra has operations of parallel
composition, node restriction and permutation and, in particular, has the axioms
of restriction reordering and of scope extension. Equivalence classes of strong
terms correspond exactly to open graphs up to isomorphism, which thus can
be seen as standard representatives of the classes. Consequently, homomorphic
properties of open graphs can be conveniently computed via structural recursion.
While two strongly equivalent graphs evaluate to the same result by construction,
it may happen that the complexities of their evaluations be vastly different. To
represent explicitly similar additional information, it is convenient to introduce
a finer graphical-algebraic initial pair of models. For instance, an algebra for the
computational complexity of problems should fit the new axiomatisation.

In this paper, we choose elementary tree decompositions, a simple variant
of the classical tree decomposition approach, as the reference graphical model.
Interestingly, for obtaining an adequate algebraic model it is enough to elimi-
nate the axioms of restriction reordering and of scope extension from the strong
specification. The resulting specification is called loose. In [17], an alternative
version of algebraic model was chosen, by eliminating only the axiom of scope
extension, and called weak. The present axiomatisation is needed in order to
achieve a tighter correspondence with tree decompositions.

Here we also consider Milner’s bigraphs [16], a widely studied graphical model
for process calculi. Once equipped with a suitable signature, bigraphs can be put
into bijective correspondence with equivalence classes of loose terms: the link
graph represents the variables, and the place graph the nesting of restrictions.

As in the strong case, the existence of graphical standard representatives
for the initial algebra makes it easy to define interesting algebras of the class.
For instance, the evaluation complexity of a term can be easily computed by
its interpretation within a simple loose algebra. Notably, the reverse application
of the scope extension axiom (i.e. aimed to reduce the scope of the restriction)
reduces, or does not change, the evaluation complexity of a term. Thus minimal
complexity must be achieved by terms which are fully reduced with respect to the
extension axiom (they are called canonical) and search for optimal evaluations
can be restricted to canonical terms. To take advantage of this property, we
define a type system where only canonical terms are typeable.

An algebra of graphs of special interest naturally arises in the case of dynamic
programming (DP) [1]. DP usually consists of minimising a cost function F of
variables X while keeping variables Y as parameters, i.e. F (Y) = minX F (X,Y).
Typically, function F has the form

F (X,Y) = F1(X1, Y1) + ... + Fn(Xn, Yn).

where each function F1, ...,Fn is dependent only on a few variables. The key issue
is how the variables in X and Y are used in F1, ...,Fn. The sharing structure can
be conveniently represented by a hypergraph F where nodes are variables and
hyperedges are labelled by functions Fi, represented as multidimensional tables.

The evaluation procedure corresponds to compute by structural recursion
the optimal cost of F , where values are multidimensional tables representing

Algebras for Tree Decomposable Graphs 205

intermediate functions, parallel composition is sum, constants are hyperedge
labels and restriction with respect to a variable x, �(x)F (X,Y)�, corresponds to
eliminate variable x in table F (X,Y): minx�F (X,Y)�. In conclusion, the solution
of an optimisation problem via dynamic programming consists of two steps: (i)
find a canonical loose term of low complexity for F ; and (ii) evaluate the term.

To compute the complexity, it is enough to define a loose homomorphism
where parallel composition F1|F2 is the max of the complexities of F1 and F2

and of the number of free variables of F1|F2, a constant is the number of variables
in the corresponding hyperedge, and restriction is the identity. Notice that since
table handling is typically of exponential complexity with respects to dimension,
the complexity of a sequence of steps is assumed to be just the max.

The computational cost of (ii) typically depends on the chosen term, but not
on the values stored in the tables. Thus the chosen term determines the complex-
ity of step (ii). This property allows to separate the two optimisation procedures:
the first step is called the secondary optimisation problem of DP [2]. Unfortu-
nately, the secondary problem is NP hard [21], thus typically it is convenient to
solve it exactly only if the evaluation must be executed many times.

Structure of the Paper. In Sect. 2 we briefly recall some basic notions and some
results from [17]. The original contribution starts in Sect. 3, where we present
the loose network specification and draw the graphical-algebraic correspondence
with binding bigraphs. Section 4 focuses on dynamic programming, tree decom-
position and canonical form, showing how to move from one to the other. There
we also define the (loose) algebra we introduced above for computing the evalu-
ation complexity. A simple type system characterises canonical forms. Finally, it
is shown that all and only canonical forms are computed by an algorithm based
on bucket elimination. Concluding remarks are in Sect. 5.

2 Background

Notation. Given a set V we denote by V � the set of (finite) sequences over V
and we let | · | return the length of a sequence. Given a function f : V1 → V2 we
overload the symbol f to denote also its lifting f : V �

1 → V �
2 , defined elementwise.

Hypergraphs. A ranked alphabet E is a set where each element e ∈ E has an
arity ar(e) ∈ N. A labelled hypergraph over a ranked alphabet E is a tuple G =
(VG, EG, aG, labG), where: VG is the set of vertices (also called nodes); EG is the
set of (hyper)edges; aG : EG → V �

G assigns to each hyperedge e the sequence of
nodes attached to it; labG : EG → E is a labeling function, assigning a label to
each hyperedge e such that |aG(e)| = ar(labG(e)).

Given two hypergraphs G1 and G2 over E , a homomorphism between them
is a pair of functions h = (hV : VG1 → VG2 , hE : EG1 → EG2) preserving con-
nectivity and labels, namely: hV ◦ aG1 = aG2 ◦ hE and labG2 ◦ hE = labG1 . We
say that G1 and G2 are isomorphic, denoted G1

∼= G2, whenever there exists
a homomorphism between them which is a component-wise isomorphism. We
write G1 � G2 for the component-wise disjoint union of G1 and G2.

206 R. Bruni et al.

Permutation Algebras. Given a countable set of variables V, we write Perm(V)
for the set of finite permutations over V, i.e., bijective functions π : V → V. A
permutation algebra is an algebra for the signature comprising all finite permu-
tations and the formal equations x id = x and (x π1) π2 = x (π2 ◦ π1).

2.1 Strong Network Algebras

In [15] Milner introduced an algebra of flowgraphs defined by simple axioms. Here
we introduce an algebra of networks that has essentially the same axioms, but
that exploits a nominal structure for nodes. Hereafter we fix a ranked alphabet E
and a countable set of variables V. We also assume functions var : E → V

� (with
ar(A) = |var(A)|, for all A ∈ E), assigning a tuple of distinct canonical variables
to each symbol of the alphabet. We require var(A) ∩ var(B) = ∅ whenever A 	= B.

We explicitly equip hypergraphs with an interface, specifying which nodes
allow them to interact when composed. We call these hypergraphs networks.

Definition 1 (Concrete network). A concrete network is a pair I � G of a
hypergraph G without isolated nodes1 such that VG ⊆ V, and a set I ⊆ VG.

Every edge e in a network can be connected to the same node multiple times.
This can be understood as having a variable substitution σ mapping the tuple
of canonical variables var(labG(e)) to the actual variables aG(e) to which e is
connected.

Two networks I1 � G1 and I2 � G2 are isomorphic whenever I1 = I2 and
there exists an isomorphism ι : G1 → G2 such that ι|I1 = idI1 .

Definition 2 (Abstract network). An abstract network is an isomorphism-
class of a concrete network.

Intuitively, abstract networks are taken up to α-conversion of non-interface
nodes. We write I � G to denote the abstract network that corresponds to the
equivalence class of the concrete network I � G.

Concrete networks can be seen as terms of an algebraic specification which we
call strong network specification, where free variables correspond to the interface,
and variable restriction (written (x)P) is used to declare local (non-interface)
nodes (x is local to P in (x)P). Following well-known algebraic descriptions
of nominal calculi [10], terms will carry a permutation algebra structure. This
enables an algebraic treatment of variable binding, together with associated
notions of scope, free/bound variables and α-conversion.

The syntax of networks is given by the following grammar:

P,Q := A(x̃) | P |Q | (x)P | Pπ | nil

where A ∈ E , π ∈ Perm(V), x ∈ V, x̃ ∈ V
� and |x̃| = ar(A). The free variables

fv(P) of P are the unrestricted ones, and are defined by recursion as expected.
1 In the network specification below, nodes are introduced as support of the per-

mutation algebra of hyperarcs. Isolated nodes would require additional items with
singleton support of little use in our model.

Algebras for Tree Decomposable Graphs 207

(AX|)

P |Q ≡s Q|P (P |Q)|R ≡s P |(Q|R) P |nil ≡s P

(AX(x) XA() α)

(x)(y)P ≡s (y)(x)P (x)nil ≡s nil (x)P ≡s (y)P [x �→ y] (y /∈ fv(P))

(AXSE) (AXπ)

(x)(P |Q) ≡s (x)P | Q (x /∈ fv(Q)) P id ≡s P (Pπ′)π ≡s P (π ◦ π′)

(AXp
π)

A(x1, . . . , xn)π ≡s A(π(x1), . . . , π(xn)) nilπ ≡s nil (P |Q)π ≡s Pπ | Qπ

((x)P)π ≡s (π(x))(Pπ)

Fig. 1. Axioms of strong networks.

The atom A(x̃) represents an A-labelled hyperedge, connecting the nodes x̃,
possibly with repetitions. The parallel composition P |Q represents the union of
networks P and Q, possibly sharing some nodes. The restriction (x)P represents
a network where x is local, and hence cannot be shared. The permutation Pπ is
P where its free variables have been renamed according to π. As usual in permu-
tation algebras, π is not a capture-avoiding substitution, but just a renaming of
all global and local names that appear in the term. The constant nil represents
the empty graph. We say that a term P is nil-free if nil is not a subterm of P .

We now introduce a strong network specification, which, as opposed to the
loose one, shown later, identifies more terms.

Definition 3 (Strong network specification). The strong network specifi-
cation consists of the syntax given above, subject to the axioms of Fig. 1.

The operator | forms a commutative monoid (AX|). Restrictions can be α-
converted (AXα), reordered and removed whenever their scope is nil (AX(x)).
The scope of restricted variables can be narrowed to terms where they occur
free by the scope extension axiom (AXSE). Axioms for permutations say that
identity and composition behave as expected (AXπ) and that permutations dis-
tribute over syntactic operators (AXp

π). Permutations replace all names bijec-
tively, including the bound ones.

Example 1. Consider the terms

(x)(y)(z)(A(x, y) | B(y, z)) and (y)((x)A(x, y) | (z)B(y, z))

They are proved to be (strong) equivalent by exploiting (AX(x)) to switch the
order of restrictions on x and y and then (AXSE) (twice) to move the restrictions
on x and z inside parallel composition.

An s-algebra A is a set together with an interpretation opA of each operator
op. The set of freely generated terms modulo the axioms of Fig. 1 is an initial

208 R. Bruni et al.

algebra. By initiality, for any such term P there is a unique interpretation �P �
A

of P as an element of A.
In [17] we show that abstract networks form an initial s-algebra. Hence, we

have a unique evaluation of abstracts networks into any other s-algebra.

Definition 4 (Initial s-algebra). The initial s-algebra N consists of abstract
networks, and the following interpretation of operations:

where: Gπ is G where each node v is replaced with π(v); G1 �I1,I2 G2 is the
disjoint union of G1 and G2 where nodes in I1 ∪ I2 with the same name are
identified; and 1G is the empty hypergraph.

Permutations in the specification allow computing the set of free variables,
called support, in any s-algebra.

Definition 5 (Support). Let A be an s-algebra. We say that a finite X ⊂ V

supports P ∈ A whenever Pπ = P , for all permutations π such that π|X = idX .
The (minimal) support supp(P) is the intersection of all sets supporting P .

It is important to note that supp(I � G) = I.

2.2 Tree Decomposition

A decomposition of a graph can be represented as a tree decomposition [3,4,7,
11,14,18], i.e., a tree where each node is a piece of the graph. Following [17],
we introduce a notion of rooted tree decomposition. Recall that a rooted tree
T = (VT , ET) is a set of nodes VT and a set of edges ET ⊆ VT × VT , such that
there is a root, i.e. a node r ∈ VT :

– with no ingoing edges: there are no edges (v, r) in ET ;
– such that, for every v ∈ VT , v 	= r, there is a unique path from r to v.

Definition 6 (Rooted tree decomposition). A rooted tree decomposition
of a hypergraph G is a pair T = (T,X), where T is a rooted tree and X =
{Xt}t∈VT

is a family of subsets of VG, one for each node of T , such that:

1. for each node v ∈ VG, there exists a node t of T such that v ∈ Xt;
2. for each hyperedge e ∈ EG, there is a node t of T such that aG(e) ⊆ Xt;
3. for each node v ∈ VG, let Sv = {t | v ∈ Xt}, and Ev = {(x, y) ∈ ET | x, y ∈

Sv}; then (Sv, Ev) is a rooted tree.

Algebras for Tree Decomposable Graphs 209

We gave a slightly different definition of tree decomposition: the original one
refers to a non-rooted, undirected tree. In our dynamic programming application
it is convenient to model hierarchical problem reductions as rooted structures.
All tree decompositions in this paper are rooted, so we will just call them tree
decompositions, omitting “rooted”. Of course the above definition includes triv-
ial decompositions, like the one with a single node, or the one where Xt = VG

for every node t. They will be ruled out by the notion of elementary tree decom-
position on which our contribution is centred (see Sect. 4.3).

Tree decompositions are suited to decompose networks: we require that inter-
face variables are located at the root.

Definition 7 (Decomposition of a network). The decomposition of a net-
work I � G is a decomposition of G rooted in r, such that I ⊆ Xr.

3 Loose Specification

In strong network specifications the order and positions of restrictions are imma-
terial. However, the order and positions in which restrictions appear in a term
provide some sort of parsing structure for the underlying network. In this section
we relax some axioms of the strong algebra to make explicit the hierarchical
structure in the network. This is achieved by showing a tight correspondence
between terms of the relaxed algebra and Milner’s binding bigraphs [13]. In the
next sections we will show that the same correspondence can be extended to
characterise some special kinds of tree decompositions, called elementary, and
also the output produced by an algorithm based on bucket elimination [9].

Definition 8 (Loose network specification). The loose network specifica-
tion is the strong one without axioms (AXSE) and (AX(x)).

The removal of axioms (AX(x)) means that the order in which restrictions
are applied is recorded in each equivalence class. The removal of axiom (AXSE)
means that the hierarchy imposed by a restriction on name x is not permeable
to all hyperarcs, even those that are not attached to x, in the sense that the
axioms do not allow to freely move them down and sideways to the restriction
on x. We write P ≡l Q if P and Q are in the same loose equivalence class.

3.1 Initial Loose Algebra of Binding Bigraphs

Our first result shows that, in the same way as the algebra of strong terms
offers a syntax for open graphs, the algebra of loose terms offers a syntax for a
well-known model of structured hypergraphs, called binding bigraphs [8,13].

We recall that bigraphs are structures where two dimensions coexist: one
related to a tree of nested components, mimicking the structure of a term; and
another related to the sharing of names. The first is called place graph, the
second link graph. The nodes of the graph are labelled by so-called controls that

210 R. Bruni et al.

A

x1 xn

(a) AB(x1, ..., xn)

0
x

(b) (x)B

0 1

(c) |B

Fig. 2. The loose algebra of binding bigraphs

fix their type and arity. A set of controls gives the signature of a class of bigraphs.
See [8] for the exact definitions.

In binding bigraphs, places can act as binders for names and the scope rule
guarantees that whenever a name is linked to some component then it is either
a free name or one bound to some parent of the (place of the) component.

Graphically a bigraph consists of some roots (dashed boxes) where nodes
(solid boxes) can be nested inside (according to the place graph). Each node is
labelled by a control that indicates the number of ports for linkage of the node.
Binding ports are denoted by circular attachments. Bigraphs can also contain
sites (grey boxes) that represent some holes where other bigraphs can be plugged
in. Sites are numbered, starting from 0. Bigraphs have also names (denoted by
x, y, z, ...) that are local if introduced by some binding port or global otherwise.
Ports and names are linked by lines, (according to the link graph).

The tensor product A ⊗ B of two bigraphs corresponds to put them side by
side, while the composition A ◦ B of two bigraphs is defined when the number
of holes in A matches with the number of roots in B and it corresponds to plug
each root of B in the corresponding hole of A.

In the following we mostly consider ground bigraphs, i.e., without sites, with
a unique root and with just global outer names. As explained in the Appendix,
we take (lean support) equivalence classes of concrete bigraphs, up-to graph
isomorphism, renaming of local names and presence of unused names.

The correspondence between loose terms and binding bigraphs is obtained
by taking one control A (drawn as a rounded box) for each constant A(x̃) with
binding arity arb(A) = 0 and free arity arf (A) = |x̃| and one control ν (drawn
as an oval) for each binding expression (x), with arb(ν) = 1 and arf (ν) = 0.

Definition 9 (The loose algebra of binding bigraphs). The l-algebra of
binding bigraphs consists of (lean-support equivalence classes of) ground binding
bigraphs (i.e., with one root and no sites). The symbols of the signature are
mapped to the binding bigraphs as shown in the table in Fig. 2 (permutations
are just applied to rename the global ports of the graph) and term substitution
corresponds to bigraph composition.

Some examples of interpretations are in Fig. 3.
Binding bigraphs offer a convenient model for the loose network specification.

Proposition 1. Binding bigraphs form an initial loose network algebra.

Algebras for Tree Decomposable Graphs 211

A B

x y z

(a) A(x, y)|B(y, z)

A B

x

y

z

(b) (y)(A(x, y)|B(y, z))

A B

x

y

z

(c) (y)(((x)A(x, y))|(z)B(y, z))

Fig. 3. Some examples of bigraphs

4 Dynamic Programming

The structure of a number of optimisation problems can be conveniently repre-
sented as dynamic programming (DP) networks, where hyperedges correspond
to atomic subproblems and nodes to (possibly shared) variables. Costs of sub-
problems are summed up and restricted variables are assigned optimal values.

In this section we will first show how optimisation problems are represented
in our framework. We will then turn our attention to the secondary optimisation
problem, i.e., the problem of finding a decomposition into subproblems of minimal
complexity. This is a problem of paramount practical importance for DP.

We have so far given two equivalent ways of decomposing a network: l-terms
and binding bigraphs. We will introduce a notion of evaluation complexity for
l-terms, and we will characterise local optima as l-canonical terms. Then we will
establish a formal connection with another way of decomposing DP problems,
namely (elementary) tree decompositions.

Finally, we will show that the well-known bucket elimination algorithm (see,
e.g., [19, 5.2.4]) precisely corresponds to computing the l-canonical form of a
term w.r.t. a given ordering on restricted variables. Leveraging the algebraic
representation of networks as terms, and the correspondence between l-terms
and tree decompositions, this result provides us with a way to compute a locally
optimal decomposition of a network in three equivalent ways: as a l-canonical
term, a binding bigraph, or a tree decomposition.

4.1 Networks as Optimisation Problems

We now introduce an s-algebra of cost functions, where networks are evaluated
to solutions of the corresponding optimisation problem. We fix a domain D of
values for variables. Then an element of the s-algebra is a cost function ϕ : (V →
D) → R∞ that given an assignment of values to variables returns its cost. To
interpret all terms we assume that an interpretation is given of each symbol
A ∈ E as a cost function funcA : (V → D) → R∞ such that, for any ρ, ρ′ : V → D,
ρ|var(A) = ρ′

|var(A) implies funcA ρ = funcA ρ′, i.e., funcA only depends on the
canonical variables of A.

Definition 10 (S-algebra of cost functions). The s-algebra V consists of
cost functions ϕ : (V → D) → R∞ and the following interpretation of operations,
for any ρ : V → D:

212 R. Bruni et al.

AV(x̃)ρ = funcA(ρ ◦ σ) nilVρ = 1

((x)Vφ)ρ = min{φρ[x �→ d]}d∈D (φπV)ρ = φ(ρ ◦ π) (φ1|Vφ2)ρ = φ1ρ + φ2ρ

where σ : V → V is a substitution mapping var(A) to x̃ component-wise and
expressing the connection between the canonical vertices of an A-labelled hyper-
edge and the actual nodes of the graph it is connected to.

Example 2. Consider the term P = (y)(x)(z)(A(x, y) | B(y, z)). This is eval-
uated as the optimisation problem consisting in minimising the sum of the cost
functions for A and B w.r.t. to all the variables. Explicitly:

�P �
V = λρ.min {funcA(ρ[x �→ d1, y �→ d2])+ funcB(ρ[y �→ d2, z �→ d3])}d1,d2,d3∈D

which, since funcA and funcB only depends on {x, y} and {y, z}, respectively, is
a single value that does not depend on ρ.

Although all terms for the same network have the same evaluation in any
algebra, different ways of computing such an evaluation, represented as different
terms, may have different computational costs.

We make this precise by introducing a notion of evaluation complexity.

4.2 Evaluation Complexity

We define the complexity of a term P as the maximum “size” of elements of an
algebra A computed while inductively constructing �P �

A, the size being given
by the number of variables in the support. Intuitively, a step of DP consists of
solving a subproblem parametrically with respect to a number n of variables.
Thus if the number of possible values of a variable is |D|, then the number of
cases to consider for solving the subproblem is |D|n, namely it is exponential
with the number n of parameters of the subproblem. As a consequence, we can
approximate the complexity of the whole problem with the complexity of the
hardest subproblem.

In our algebraic representation, DP problems are terms P of the strong alge-
bra interpreted as functions ϕ : (V → D) → R∞ and their cost is just the evalua-
tion of P . Solving a subproblem corresponds to evaluating a restriction operator
(x)P of a term P , while the parameters are the variables in its support. On
the other hand, the cost of a single case is again proportional to |D|: we fix the
parameters and we optimize with respect to the values of the restricted variable.
Thus the complexity of evaluating (x)P is |fv(P)|. Notice that it represents the
space and time complexity of the problem. In fact, it correctly coincides with the
dimension of the matrix needed to represent the function ϕ : (V → D) → R∞
corresponding to �P �

A. The key observation is that if we take two strong equiv-
alent terms P1 and P2, they will necessarily evaluate to the same cost function
in (V → D) → R∞, but they will not have necessarily the same complexity.

Example 3. Consider the following terms:

P = (y)(x)(z)(A(x, y) | B(y, z)) Q = (y)((x)A(x, y) | (z)B(y, z)).

Algebras for Tree Decomposable Graphs 213

Although P ≡s Q, these terms have different complexities. The term P
has complexity 3 because, when evaluating it in any algebra, one has to
evaluate A(x, y)|B(y, z), and then solve it w.r.t. all its variables. Intuitively,
A(x, y)|B(y, z) is the most complex subproblem one considers in P , with 3 vari-
ables. Instead, the complexity of Q is 2, because its evaluation requires solving
A(x, y) and B(y, z) w.r.t. x and z, which are problems with 2 variables.

Given a term in the strong algebra, the problem of finding a (syntactical) term
with minimal complexity corresponds to the secondary optimisation problem of
DP. In [17] we have inductively defined a complexity function for terms.

Definition 11. Given a term P , its complexity 〈〈P 〉〉 is defined as follows:

〈〈P |Q〉〉 = max {〈〈P 〉〉, 〈〈Q〉〉, |fv(P |Q)|} 〈〈(x)P 〉〉 = 〈〈P 〉〉 〈〈Pπ〉〉 = 〈〈P 〉〉
〈〈A(x̃)〉〉 = |set(x̃)| 〈〈nil〉〉 = 0

Complexity is well-defined for loose terms but not for strong terms, as applying
(AXSE) may change the complexity (see [17]).

Lemma 1. Given (x)(P |Q), with x /∈ fv(Q), we have 〈〈(x)P |Q〉〉 ≤ 〈〈(x)(P |Q)〉〉.
We now classify l-terms according to their complexity. We say an l-term is

pure if every subterm (x)P is such that x ∈ fv(P).

Definition 12 (L-normal and l-canonical forms). An l-term is in l-normal
form whenever it is of the form

(x̃)(A1(x̃1) | A2(x̃2) | . . . | An(x̃n))

A l-term is in l-canonical form whenever the directed form of (AXSE)

(x)(P |Q) → (x)P | Q (x /∈ fv(Q))

cannot be applied to it. For both forms, we assume that they are pure and that
nil sub-terms are removed via (AX|).

L-normal forms have maximal complexity. A term can be s-equivalent (≡s)
to several l-normal forms, all with the same complexity: they differ for the order
in which restrictions are applied.

Example 4. The l-term (z)(x)(y)(A(x, y)|B(y, z)) is in l-canonical form, while
the l-term (x)(y)(z)(A(x, y)|B(y, z)) is not, because the axiom (AXSE) is appli-
cable to restrict the scope of x as in (x)(y)(A(x, y)|(z)B(y, z)).

Due to Lemma 1, l-canonical forms are local minima of complexity w.r.t.
the application of strong axioms minus (AX(x)). In fact, (AX(x)) may enable
further applications of (AXSE), and lead to a further complexity reduction, as
shown in [17] for weak terms. This phenomenon is exemplified in Example 4,
where bringing (z) closer to the parallel via restriction swaps makes the term
suboptimal. By forbidding (AX(x)), we considerably simplify the algorithm for
computing local complexity optima, and we recover a full correspondence with
the bucket elimination algorithm [9], as we shall see later.

214 R. Bruni et al.

4.3 Elementary Tree Decompositions

In this section we establish a correspondence between two ways of decomposing
problems that admit a graph model: loose terms and tree decompositions. We
first introduce the novel notion of elementary tree decomposition (e.t.d.).

Definition 13 (Elementary tree decomposition). A tree decomposition
(T,X) for a network I � G is elementary whenever |Xr \ I| ≤ 1 and, for all
non-root nodes t of T , |Xt \ Xparent(t)| = 1.

We can now adapt the translation function from tree decompositions to terms
from [17] to elementary tree decomposition (e.t.d. for short).

Definition 14 (From elementary tree decompositions to l-terms). Let
T = (T,X) be an e.t.d. for I � G. For each node t of T , let E(t) ⊆ EG and
V (t) ⊆ VG be sets of nodes and edges of G such that e ∈ E(t) (resp. v ∈ V (t))
if and only if t is the closest node to the root of T such that αG(e) ⊆ Xt (resp.
v ∈ Xt). Let τ(t) be recursively defined on nodes of T as follows:

τ(t) = (x)(A1(x̃1)|A2(x̃2)| . . . |An(x̃n)|τ(t1)|τ(t2)| . . . |τ(tk))

where E(t) = {e1, e2, . . . , en}, x ∈ V (t)\I (we drop the restriction if V (t)\I = ∅),
labG(ei) = Ai, αG(ei) = x̃i, and t1, t2, . . . , tk are the children of t in T . Then
we define term(T) := τ(r), where r is the root of T .

It is immediate to observe that each e.t.d. is mapped to an l-term. In fact, at each
node we add at most one restriction, which results in an ordering over restricted
names. In general the mapping is not injective, as the following example shows.

Example 5. Consider the l-term (x)(A(x, y)|(z)B(y, z)). Then term() maps both
the elementary tree decompositions depicted in Fig. 4a to it.

We shall define a converse mapping, from pure l-terms to e.t.d.s. In the
following we exploit the fact that every pure l-term is congruent to the form

(R) (A1(x̃1)| . . . |A1(x̃n)|P1| . . . |Pk)

where |R| ≤ 1 and it occurs free in the rest of the term if non-empty, n, k ≥ 0,
and Pi are l-terms of the same form with a top level restriction.

Definition 15 (From pure l-terms to elementary tree decompositions).
Given a pure l-term P such that

P ≡l (R) (A1(x̃1)| . . . |An(x̃n)|P1| . . . |Pk)

the corresponding e.t.d. etd(P) is recursively defined as follows:

Algebras for Tree Decomposable Graphs 215

{x, y}

{x, y, z}

{x, y}

{y, z}

{x, y}

{x, y, z}

(a)

{x}

{x, y}

{x, y, z}

(b)

Fig. 4. E.t.d.s for Examples 5(a) and 6(b). For simplicity, we have annotated each node
t with the corresponding set Xt.

A(x̃) : set(x̃)
P : X

Pπ : π(X)
P : X ∪ {z}

(z)P : fv((z)P)
P1 : X1 P2 : X2

P1|P2 : X1 ∩ X2

Fig. 5. Type rules for l-canonical terms

The place graph of the binding bigraph PB is tightly connected to etd(P).
In fact, if we remove from the place graph all leaves whose controls are atoms
A we get the tree structure of (controls that are) restrictions. Then each node
of the graph can be tagged with the names of the ports that are used by nested
controls and we get etd(P). The free variables of P will also appear in the root.

Lemma 2. We have that etd(P) is an elementary tree decomposition of �P �
N .

As for term(), this translation is not injective (see the following example).

Example 6. Consider the l-terms P = (x)(y)(A(x, y)|(z)B(x, y, z)) and Q =
(x)(y)(z)(A(x, y)|B(x, y, z)). Then etd(P) = etd(Q) is the e.t.d. in Fig. 4b.

The translation is injective if we restrict the domain to l-canonical terms.

Proposition 2. Different l-canonical terms give rise to different e.t.d.s.

We conjecture that term() is left-inverse to etd() on l-canonical terms.

4.4 A Type System for l-canonical Terms

We use a type system to characterise l-canonical forms. Type judgements are of
the form P : X where X denotes the set of names of P that can be restricted
immediately on top of P . The typing rules are in Fig. 5. Those for atoms and for
permutations are trivial.

The rule for restriction deserves some explanation. Let P be a term such that
the names in X ∪ {z} can be restricted, then for the term (z)P all remaining
names fv((z)P) can also be restricted. This is because taken any name x ∈
fv((z)P) \ X, in the l-term (x)(z)P we cannot swap x with z in order to apply
the axiom (AXSE). The fact that (AXSE) cannot be applied to z is guaranteed
by z being one of the names that can be restricted on top of P (see premise).

216 R. Bruni et al.

Fig. 6. Two type derivations

Fig. 7. The wheel network W2(v, x)

The rule for parallel composition follows a simple criterion: only names that
are in common between all constituents can be restricted. If a name z appears in
P1 but not in P2, then obviously the term (z)(P1|P2) is not in l-canonical form.

Typing is preserved by the axioms of the loose network specification, in the
sense that for all nil-free terms P ≡l Q and type X, if P : X, then Q : X.

Proposition 3. For any P and type X, if P : X then P is in l-canonical form.

Proposition 4. If P 	= nil is in l-canonical form, then P : X for some X.

Example 7. The term (x)(y)(A(x, y) | (z)B(y, z)) is in l-canonical form as wit-
nessed by the derivation in Fig. 6, left. Also the term (y)((x)A(x, y) | (z)B(y, z))
is in l-canonical form (see Fig. 6, right). The term (x)(y)(z)(A(x, y)|B(y, z))
is not typeable, because A(x, y)|B(y, z) : {y} and z 	∈ {y} thus the subterm
(z)(A(x, y)|B(y, z)) is not typeable. In fact it is not in l-canonical form because
the axiom (AXSE) can be applied to restrict the scope of z to B(y, z).

Example 8. Consider the wheel example from [17] in Fig. 7 (see [20] for a
graph grammar presentation). Then R0(x, z, y) : {x}, but R1(x, z, y) =
(v)(R0(x, z, v)|R0(v, z, y)) is not typeable, as R0(x, z, v)|R0(v, z, y) : ∅. We can
give an alternative typeable definition of wheels where all terms are l-canonical:

R0(x, z, y) � (v)(A(x, v)|B(v, z)|A(v, y)) : {x, z, y}
Ri+1(x, z, y) � (v)(Ri(x, z, v)|Ri(v, z, y)|B(v, z)) : {x, z, y}

FWk(x, y) � (z)(Rk(x, z, y)|B(x, z)|B(y, z)) : {x, y}
Wk(x, y) � FWk(x, y)|A(y, x) : {x, y}

Algebras for Tree Decomposable Graphs 217

Fig. 8. Bucket elimination algorithm for l-terms.

4.5 Computing l-canonical Forms

We now give an algorithm to compute an l-canonical form of a term. This is based
on bucket elimination (see, e.g., [19, 5.2.4]), also known as adaptive consistency.

We briefly recall the bucket elimination algorithm. Given a network represent-
ing an optimisation problem, and a total order over its variables, sub-problems
are partitioned into buckets: each sub-problem is placed into the bucket of its
last variable in the ordering. At each step, the bucket of a variable x is elimi-
nated by creating a new sub-problem involving all the variables in the bucket
different from x. This new problem is put into the bucket of its last variable,
and the process is iterated.

In [17] we have extended the algorithm to modify the ordering of variables
in the attempt of reducing the size of subproblems. This required an additional
backtracking step. Here we show that l-canonical forms can be computed via the
ordinary bucket elimination algorithm, suitably adapted to l-terms.

Our algorithm is shown in Fig. 8. Here putting a constraint in the bucket of
its last variable amounts to applying the scope extension axiom, and eliminating
a variable amounts to restricting it. The algorithm takes as input an l-term in
normal form (R)M , represented by a totally ordered set of variables R (recall
that restricted variables are assumed to be distinct), and a multiset of atomic
terms M . The algorithm first picks the max variable in the total order (line 3),
then it partitions the input l-term into subterms according to whether x occurs
free or not (line 4), and from the former it creates a new term P ′ where x is
restricted. It then adds P ′ to the remaining terms of P , removes x from the total
order R, and iterates the process for the resulting term.

Example 9. We now show an example of execution. We will run the algorithm
with the following l-normal term as input:

(a < b < c < d) {A1(c, d), A2(d, b), A3(d, a), A4(b, a)}

On the first iteration, line 3 picks d, and line 4 will select M ′ =
{A1(c, d), A2(d, b), A3(d, a)}. Then R and M in line 6 and 7 are

(a < b < c) {A4(b, a), (d){A1(c, d), A2(d, b), A3(d, a)} }

218 R. Bruni et al.

At the next iteration, line 3 picks c, and line 6 and 7 give the following:

(a < b) {A4(b, a), (c)(d){A1(c, d), A2(d, b), A3(d, a)}}

Despite c occurring only in A1(c, d), the presence of (d), which is greater in the
ordering, prevents (c) from permeating the parallel composition. After two more
iterations, where the variables b and a are processed, the output is:

(a)(b)(A4(b, a) | (c)(d)(A1(c, d) | A2(d, b) | A3(d, a)))

The algorithm outputs all and only the l-canonical forms for a given term.

Proposition 5. Given a term P , a term C ≡s P is l-canonical if and only
if there is an l-normal form for P which, if provided as input to the bucket
elimination algorithm, outputs C.

5 Conclusion

Along the graphical-algebraic correspondence introduced by Milner [15] for net-
works and flow algebras, in [17] two of the authors have studied the connections
between tree decompositions and certain weak network algebras. In this paper
the correspondence of the two former models and, in addition, of a version of
Milner’s bigraphs [16], has been fully formalised introducing a small variation
of weak network algebras, called loose network algebras. Milner’s flow algebras
also fit in the schema as strong algebras. The algebraic treatment is instrumental
for conveniently expressing important computational properties of the complex
problem at hand. In this line, we examine the very relevant case of graphical opti-
misation problems solved via dynamic programming. We show that the solution
of a problem corresponds to the evaluation of a strong term, while the cost of
such a computation is obtained by evaluating the same term in a loose algebra.
It is also shown that reducing a loose term w.r.t. the axiom of scope expan-
sion produces a modified loose term of better or equal complexity. The notion
of l-canonical form for loose terms captures local minima of complexity and is
tightly related to particular kinds of tree decompositions, called elementary. We
also define a type system for checking if a term is in l-canonical form. Finally,
when a total ordering is imposed on the variables of a term, a term in l-canonical
form can be uniquely derived by applying Dechter’s bucket algorithm [9].

The problem of how to represent parsing trees for (hyper)graphs has been
studied in depth in the literature. We mention the work of Courcelle on graph
algebras [6]. Here tree decompositions are used to bound the complexity of
checking graph properties, and a term encoding allows employing automata-
theoretic tools. The focus is different than ours, and investigating connec-
tions is left for future work. Other approaches based on tree decompositions
are [3,4,7,11,14,18]. Here we provide an algebraic characterisation of tree
decompositions with locally minimal complexity. The application of bigraphs
to dynamic programming is also novel. We plan to study the relation between

Algebras for Tree Decomposable Graphs 219

loose network specifications and graph grammars for hyperedge replacement [5],
where the structure of a derived graph is its derivation tree: it seems that our
approach has a simpler compositional structure, and an up-to-date foundation
for name handling.

References

1. Bellman, R.: Some applications of the theory of dynamic programming - a review.
Oper. Res. 2(3), 275–288 (1954)

2. Bertelè, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory
Ser. A 14(2), 137–148 (1973)

3. Blume, C., Bruggink, H.J.S., Friedrich, M., König, B.: Treewidth, pathwidth and
cospan decompositions with applications to graph-accepting tree automata. J. Vis.
Lang. Comput. 24(3), 192–206 (2013)

4. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255–269 (2008)

5. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B.K., Knight, K.:
Parsing graphs with hyperedge replacement grammars. In: Proceedings of ACL
2013, Long Papers, vol. 1, pp. 924–932. The Association for Computer Linguistics
(2013)

6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, Encyclopedia of Mathematics and Its Applications,
vol. 138. Cambridge University Press, Cambridge (2012)

7. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theoret. Comput. Sci. 109(1&2), 49–82 (1993)

8. Damgaard, T.C., Birkedal, L.: Axiomatizing binding bigraphs. Nord. J. Comput.
13(1–2), 58–77 (2006)

9. Dechter, R.: Constraint Processing. Elsevier Morgan Kaufmann, Amsterdam
(2003)

10. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras,
(pre)sheaves and named sets. High.-Order Symbolic Comput. 19(2), 283–304
(2006)

11. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceed-
ings of UAI 2004, pp. 201–208. AUAI Press (2004)

12. Hoch, N., Montanari, U., Sammartino, M.: Dynamic programming on nominal
graphs. In: Proceedings of GaM@ETAPS 2015, EPTCS, vol. 181, pp. 80–96 (2015)

13. Jensen, O.H., Milner, R.: Bigraphs and mobile processes (revised). Technical report
580, University of Cambridge (2004)

14. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0045375

15. Milner, R.: Flowgraphs and flow algebras. J. ACM 26(4), 794–818 (1979)
16. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CON-

CUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44685-0 2

17. Montanari, U., Sammartino, M., Tcheukam Siwe, A.: Decomposition structures for
soft constraint evaluation problems: an algebraic approach. In: Graph Transforma-
tion, Specifications, and Nets - In Memory of H. Ehrig, pp. 179–200 (2018)

18. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36(1), 49–64 (1984)

https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/3-540-44685-0_2
https://doi.org/10.1007/3-540-44685-0_2

220 R. Bruni et al.

19. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming,
Foundations of Artificial Intelligence, vol. 2. Elsevier, Amsterdam (2006)

20. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations: Foundations, vol. 1. World Scientific, Singapore (1997)

21. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alge-
braic Discrete Methods 2(1), 77–79 (1981)

	Algebras for Tree Decomposable Graphs
	1 Introduction
	2 Background
	2.1 Strong Network Algebras
	2.2 Tree Decomposition

	3 Loose Specification
	3.1 Initial Loose Algebra of Binding Bigraphs

	4 Dynamic Programming
	4.1 Networks as Optimisation Problems
	4.2 Evaluation Complexity
	4.3 Elementary Tree Decompositions
	4.4 A Type System for l-canonical Terms
	4.5 Computing l-canonical Forms

	5 Conclusion
	References

