1,663 research outputs found

    Special Perturbations on the Jetson TX1 and TX2 Computers

    Get PDF
    Simplified General Perturbations Number 4 (SGP4) has been the traditional algorithm for performing Orbit Determination (OD) onboard orbiting spacecraft. However, the recent rise of high-performance computers with low Size, Weight, and Power (SWAP) factors has provided the opportunity to use Special Perturbations (SP), a more accurate algorithm to perform onboard OD. This research evaluates the most efficient way to implement SP on NVIDIA’s Jetson TX series of integrated Graphical Processing Units (GPUs). An initial serial version was implemented on the Jetson TX1 and TX2\u27s Central Processing Units (CPUs). The runtimes of the initial version are the benchmark that the runtimes of the other versions were compared against. A second version of SP was implemented using compiler optimizations to increase the speed of the program. A third version was developed to utilize the Jetsons\u27 256-core GPU for parallel processing to reduce the runtimes of the program. Runtimes of the different versions were then analyzed to determine the most efficient way to implement SP on the Jetson TX series of computers

    IRF3 polymorphisms induce different innate anti-Theiler's virus immune responses in RAW264.7 macrophages

    Get PDF
    AbstractPersistent viral infections can lead to disease such as myocarditis. Theiler's murine encephalomyelitis virus (TMEV) infects macrophages of SJL/J (H-2s) mice establishing persistent infections leading to demyelinating disease. In contrast macrophages from B10.S (H-2s) mice clear TMEV. Activation of the transcription factor IRF3 induces IFNβ, ISG56, and apoptosis for viral clearance, but also inflammatory cytokines, such as IL-23 and IL6, which contribute to disease. Here we identify polymorphisms in the IRF3 of SJL/J versus B10.S mice that are located in DNA binding, nuclear localization, and autoinhibitory domains. SJL-IRF3 expression in RAW264.7 macrophage cells with or without TMEV infection decreased IL-23p19 promoter activity compared with B10S-IRF3. In contrast SJL-IRF3 increased IL-6, ISG56 and IFNβ in response to TMEV. B10S-IRF3 expression augmented apoptotic caspase activation and decreased viral RNA in TMEV-infected macrophages while SJL-IRF3 increased viral replication with less caspase activation. Therefore IRF3 polymorphisms contribute to viral persistence and altered cytokine expression

    A search for rapidly pulsating hot subdwarf stars in the GALEX survey

    Get PDF
    NASA's Galaxy Evolution Explorer (GALEX) provided near- and far-UV observations for approximately 77 percent of the sky over a ten-year period; however, the data reduction pipeline initially only released single NUV and FUV images to the community. The recently released Python module gPhoton changes this, allowing calibrated time-series aperture photometry to be extracted easily from the raw GALEX data set. Here we use gPhoton to generate light curves for all hot subdwarf B (sdB) stars that were observed by GALEX, with the intention of identifying short-period, p-mode pulsations. We find that the spacecraft's short visit durations, uneven gaps between visits, and dither pattern make the detection of hot subdwarf pulsations difficult. Nonetheless, we detect UV variations in four previously known pulsating targets and report their UV pulsation amplitudes and frequencies. Additionally, we find that several other sdB targets not previously known to vary show promising signals in their periodograms. Using optical follow-up photometry with the Skynet Robotic Telescope Network, we confirm p-mode pulsations in one of these targets, LAMOST J082517.99+113106.3, and report it as the most recent addition to the sdBVr class of variable stars.Comment: 11 Pages, 8 Figures, Accepted for publication in the Astrophysical Journa

    Validity of Body Volume Estimates from Infrared 3-dimensional Scanning and Dual-energy X-ray Absorptiometry as Compared to Air Displacement Plethysmography

    Get PDF
    Traditional methods of estimating body volume (BV) such as hydrostatic weighing and air-displacement plethysmography (ADP) could theoretically be replaced using BV estimates obtained by dual-energy x-ray absorptiometry (DXA) or infrared 3-dimensional (3D) scanning devices. Multiple 3D scanning technologies have recently become popularized, including scanners that acquire data through pattern deformations caused by the projected light over the 3D object (i.e., structured light [SL] scanners) or by calculating depth from the time it takes reflected photons to reach the scanner’s image sensor (i.e. time of flight [ToF] scanners). While these 3D scanning technologies currently predict body composition based primarily on circumference estimates, the BV estimates obtained by this technology could be used to predict body composition if the BV estimates are validated. PURPOSE: The purpose of this analysis was to examine the validity of BV estimates obtained from DXA-derived formulas and multiple types of 3D scanners as compared to ADP. METHODS: At a single research visit, BV estimates were obtained via ADP, prediction from DXA output, and three infrared 3D scanners in a sample of 102 adults (64 F, 38 M; age: 29.2 ± 13.4 y; BMI: 24.3 ± 3.9 kg/m2; BF%: 24.6 ± 8.3%). The 3D scanners included a SL scanner with a static configuration (SL-S) in which the scanner and participant are stationary during assessments, a SL scanner with a dynamic configuration (SL-D) in which the participant is rotated during the scan, and a ToF scanner with a dynamic configuration. ADP was designated as the criterion method, and BV estimates were compared using one-way ANOVA and post hoc testing with Bonferroni correction. Additional evaluations were conducted using the coefficient of determination (R2), constant error (CE), total error (TE), and 95% limits of agreement (LOA). RESULTS: DXA-derived BV estimates were valid and produced the lowest error of all methods (p \u3e 0.05; R2: 1.00; CE: 0 – 1.4 L; TE: 0.8 – 1.5 L; LOA: 1.0 – 1.8 L). BVSL-D did not differ from BVADP (p \u3e 0.05; R2: 1.00; CE: -3.9 L; TE: 4.0 L; LOA: 2.5 L), although errors were higher than the DXA-derived equations. The SL-S and ToF scanners did not produce valid estimates, although they differed in the direction and magnitude of errors. The SL-S scanner overestimated BV relative to BVADP (p=0.01; R2: 0.94; CE: 7.0 L; TE: 8.0 L; LOA: 7.3 L), while the ToF scanner underestimated BV relative to BVADP (p \u3c 0.001; R2: 0.99; CE: -9.7 L; TE: 9.9 L; LOA: 4.6 L). CONCLUSION: The present results add to the growing research indicating that DXA-derived BV may be an acceptable replacement to traditional methods of BV assessment. Although the SL-D 3D scanner exhibited better validity of BV estimates as compared to the other scanners, improvements in the validity of BV estimates obtained from 3D scanners are necessary before this technology can be viewed as a viable alternative to traditional methods of BV assessment
    • …
    corecore