7 research outputs found
Recommended from our members
Experience with High Pressure Ultrapure Water Rinsing of Niobium Cavities
In a series of experiments on single and 5-cell L-band niobium cavities high pressure ultrapure water rinsing was used as a cleaning step after buffered chemical polishing. The cavities generally exhibited little field emission loading. In the test series on a single cell cavity peak surface fields of E{sub peak} {approx_equal} 50 MV/m were reproducibly obtained after each new chemical surface treatment without field emission loading
Recommended from our members
Test of a new RF Separator Structure for CEBAF
A prototype of the rf separator for CEBAF has been made and successfully beam tested. This structure is a new design which has a high transverse shunt impedance together with a small transverse dimension compared to more conventional structures. Five rf separators will be used at CEBAF to allow beam from any one of the five recirculation passes to be delivered to any of the three experimental halls. This paper presents the basic design of the structure, and theoretical, rf, and beam-test results
Recommended from our members
DESIGN, PROTOTYPE AND MEASUREMENT OF A SINGLE-CELL DEFLECTING CAVITY FOR THE ADVANCED PHOTON SOURCE
After the design optimization of a squashed elliptical shape, single-cell, superconducting (SC) deflecting cavity at 2.815 GHz, a copper prototype has been bench measured to determine its rf properties and the effectiveness of waveguide damping of parasitic modes [1]. RF cold tests were also performed at 2K on niobium single-cell and two-cell prototype cavities. Details of impedance calculation using wakefiled analysis of the single-cell cavity are shown to meet the strict 200 mA beam stability requirement of the Advanced Photon Source (APS) at Argonne National Lab where a total of 16 single-cell cavities will be divided into two cryomodule. The design of higher-order mode (HOM) waveguide damping, the simulations of the Lorenz force detuning, and the prototype of on-cell damping are presented
Recommended from our members
Recent Progress on High-Current SRF Cavities at Jlab
JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, a practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule
Recommended from our members
Design and Prototype Progress toward a Superconducting Crab Cavity Cryomodule for the APS
A squashed, elliptical supercondconducting (SC) cavity with waveguide dampers on the beam pipes has currently been chosen as the baseline design [1] for the Short Pulse X-ray (SPX) project at the Advanced Photon Source (APS). An alternate cavity design, with a waveguide damper located directly on the cavity cell for improved damping characteristics, has also been designed and cold-tested with promising results. In either case, eight cavities would be operated CW in a single cryomodule at 2K to produce an electron bunch chirp of 4MV at a frequency of 2.815 GHz. Detailed analysis of multipactoring (MP), Lorentz force detuning (LFD), and the thermal properties of the baseline design has led to an engineering specification of the basic parameters of the cryomodule
Recommended from our members
Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project
The Spallation Neutron Source project includes a superconducting linac section in the energy range from 192 MeV to 1000 MeV. For this energy range two types of cavities are needed with geometrical beta - values of beta = 0.61 and beta = 0.81. An aggressive cavity prototyping program is being pursued at Jlab, which calls for fabricating and testing of four beta = 0.61 cavities and two beta = 0.81 cavities. Both types consist of six cells made from high purity niobium and feature one HOM coupler of the TESLA type on each beam pipe and a port for a high power coaxial input coupler. Three of the four beta = 0.61 cavities will be used for a cryomodule test at the end of the year 2001. At this time two cavities of each type have been fabricated and the first tests on the beta = 0.61 cavity exceeded the design values for gradient and Q - value: Eacc = 10.3 MV/m and Q = 6.5 x 10{sup 9} at 2.1K. This paper will describe the cavity design with respect to electrical and mechanical features, the fabrication efforts and the results obtained with the different cavities existing at the time of the conference