8 research outputs found

    Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation

    Get PDF
    The FORTRAN computing program predicts flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuels of varying end point and hydrogen content specifications. The program has a provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case

    Computer model for refinery operations with emphasis on jet fuel production. Volume 2: Data and technical bases

    Get PDF
    The FORTRAN computing program predicts the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications. The program has provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case. The report has sufficient detail for the information of most readers

    Computer model for refinery operations with emphasis on jet fuel production. Volume 1: Program description

    Get PDF
    A FORTRAN computer program is described for predicting the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications. The program has provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case

    IEA Energy conservation in the iron and steel industry. [US and Western Europe]

    No full text
    The NATO Committee on the Challenges of Modern Society research program, under the auspices of the IEA, had the objectives of collecting data on material requirements and energy-consumption patterns in selected energy-intensive industries in the US and Western Europe, of identifying technologies and operating practices with the potential for energy conservation in those industries, and of recommending research projects that could lead to improved energy efficiency. The steel industry was selected for analysis and ideas for an international cooperative program were developed. Representatives from various countries conducted meetings and the form of an implementing agreement for a research and development program was finalized in December, 1980. The program includes three technical areas: hot-surface inspection, heat recovery, and coal gasification. Hot-surface inspection methods to be demonstrated are: optical, induction, electromagnetic ultrasonic, electromagnetic ultrasonic surface testing methods, and eddy current method for hot surface inspection and an infrared system (possibly). Three heat-recovery projects are: ceramic heat wheel development; demonstration of granular bed/heat pipe system for heat recovery; and demonstration of tubular ceramic recuperators. Processes in coal gasification are: converter process, gas treatment, and iron treatment. Each project is described in detail. (MCW

    Old and New Problems in Human Tumor Cell Cultivation

    No full text
    corecore