3,645 research outputs found

    Emergence of Compositional Representations in Restricted Boltzmann Machines

    Full text link
    Extracting automatically the complex set of features composing real high-dimensional data is crucial for achieving high performance in machine--learning tasks. Restricted Boltzmann Machines (RBM) are empirically known to be efficient for this purpose, and to be able to generate distributed and graded representations of the data. We characterize the structural conditions (sparsity of the weights, low effective temperature, nonlinearities in the activation functions of hidden units, and adaptation of fields maintaining the activity in the visible layer) allowing RBM to operate in such a compositional phase. Evidence is provided by the replica analysis of an adequate statistical ensemble of random RBMs and by RBM trained on the handwritten digits dataset MNIST.Comment: Supplementary material available at the authors' webpag

    Probing the entanglement and locating knots in ring polymers: a comparative study of different arc closure schemes

    Full text link
    The interplay between the topological and geometrical properties of a polymer ring can be clarified by establishing the entanglement trapped in any portion (arc) of the ring. The task requires to close the open arcs into a ring, and the resulting topological state may depend on the specific closure scheme that is followed. To understand the impact of this ambiguity in contexts of practical interest, such as knot localization in a ring with non trivial topology, we apply various closure schemes to model ring polymers. The rings have the same length and topological state (a trefoil knot) but have different degree of compactness. The comparison suggests that a novel method, termed the minimally-interfering closure, can be profitably used to characterize the arc entanglement in a robust and computationally-efficient way. This closure method is finally applied to the knot localization problem which is tackled using two different localization schemes based on top-down or bottom-up searches.Comment: 9 pages, 7 figures. Submitted to Progress of Theoretical Physic

    Il viaggio celeste in Paolo: appunti da una ricerca in corso

    Get PDF

    L'homme et l'animal dans le bassin du lac Tchad

    Get PDF
    Le mythe de l'antilope (oryx, damalisque ou bubale selon les populations concernĂ©es) fait partie de la cultures des "Arabes Zaghawa" appelĂ©s parfois aussi Djumbo Dirong, des Mimi Ab-tetel, des Dadjo. Un despote, dont les faits et gestes abusifs sont minutieusement dĂ©crits, est invitĂ© par ceux qui souhaitent s'affranchir de sa tyrannie, Ă  prendre pour monture une antilope. Alors qu'il galope, ligotĂ© sur le dos de l'animal, Ă  l'intĂ©rieur d'un cercle composĂ© de ses parents et alliĂ©s, le cercle s'ouvre et le tyran est emportĂ© vers l'ouest. Sa course se termine dans un groupe Ă©tranger et son mariage avec une fille de ce groupe est Ă  l'origine d'un nouveau groupe ethnique ; dans une variante ses membres dĂ©chiquetĂ©s jalonnent sa fuite et donnent naissance Ă  autant de groupes humains. Des deux schĂ©mas correspondent Ă  l'histoire du peuplement que permettent de retracer les enquĂȘtes de terrain. On retrouve ce mythe dans l'histoire de divers groupes sara. Il est alors "rĂ©duite" Ă  la seule partie fondation d'un groupe humain et le hĂ©ros n'apparaĂźt plus comme un tyran mais comme un homme sage et gĂ©nĂ©reux. (RĂ©sumĂ© d'auteur

    Equilibrium and kinetic properties of knotted ring polymers: a computational approach

    Get PDF
    We provide hereafter a summary of the Thesis organization. Chapter 1 contains a short introduction to the mathematical theory of knots. Starting from the mathematical definition of knotting, we introduce the fundamental concepts and knot properties used throughout this Thesis. In chapter 2 we tackle the problem of measuring the degree of localization of a knot. This is in general a very challenging task, involving the assignment of a topological state to open arcs of the ring. To assign a topological state to an open arc, one must first close it into a ring whose topological state can be assessed using the tools introduced in chapter 1. Consequently, the resulting topological state may depend on the specific closure scheme that is followed. To reduce this ambiguity we introduce a novel closure scheme, the minimally-interfering closure. We prove the robustness of the minimally-interfering closure by comparing its results against several standard closure schemes. We further show that the identified knotted portion depends also on the search algorithm adopted to find it. The knot search algorithms adopted in literature can be divided in two general categories: bottom-up searches and top-down searches. We show that bottom-up and knot-down searches give in general different results for the length of a knot, the difference increasing with increasing length of the polymer rings. We suggest that this systematic difference can explain the discrepancies between previous numerical results on the scaling behaviour of the knot length with increasing length of polymer rings in good solvent. In chapter 3 we investigate the mutual entanglement between multiple prime knots tied on the same ring. Knots like these, which can be decomposed into simpler ones, are called composite knots and dominate the knot spectrum of sufficiently long polymers [131]. Since prime knots are expected to localize to point-like decorations for asymptotically large chain lengths, it is expected that composite knots should factorize into separate prime components [101, 82, 43, 11]. Therefore the asymptotic properties of composite knots should merely depend on the number of prime components (factor knots) by which they are formed [101, 82, 43, 11] and the properties of the single prime components should be largely independent from the presence of other knots on the ring. We show that this factorization into separate prime components is only partial for composite knots which are dominant in an equilibrium population of Freely Jointed Rings. As a consequence the properties of those prime knots which are found as separate along the chain depend on the number of knots tied on it. We further show that these results can be explained using a transparent one-dimensional model in which prime knots are substituted with paraknots. Chapters 4, 5 and 6 are dedicated to investigate the interplay between topological entanglement and geometrical entanglement produced either by surrounding rings in a dense solution or spherical confinement. In chapter 4 we investigate the equilibrium and kinetic properties of solutions of model ring polymers, modulating the interplay of inter- and intra-chain entanglement by varying both solution density (from infinite dilution up to 40% volume occupancy) and ring topology (by considering unknotted and trefoil-knotted chains). The equilibrium metric properties of rings with either topology are found to be only weakly affected by the increase of solution density. Even at the highest density, the average ring size, shape anisotropy and length of the knotted region differ at most by 40% from those of isolated rings. Conversely, kinetics are strongly affected by the degree of inter-chain entanglement: for both unknots and trefoils the characteristic times of ring size relaxation, reorientation and diffusion change by one order of magnitude across the considered range of concentrations. Yet, significant topology-dependent differences in kinetics are observed only for very dilute solutions (much below the ring overlap threshold). For knotted rings, the slowest kinetic process is found to correspond to the diffusion of the knotted region along the ring backbone. In chapter 5 we study the interplay of geometrical and topological entanglement in semiflexible knotted polymer rings under spherical confinement. We first characterize how the top-down knot length lk depends on the ring contour length, Lc and the radius of the confining sphere, Rc. In the no- and strong-confinement cases we observe weak knot localization and complete knot delocalization, respectively. We show that the complex interplay of lk, Lc and Rc that seamlessly bridges these two limits can be encompassed by a simple scaling argument based on deflection theory. We then move to study the behaviour of the bottom-up knot length lsk under the same conditions and observe that it follows a qualitatively different behaviour from lk, decreasing upon increasing confinement. The behaviour of lsk is rationalized using the same argument based on deflection theory. The qualitative difference between the two knot lengths highlights a multiscale character of the entanglement emerging upon increasing confinement. Finally, in chapter 6 we adopt a complementary approach, using topological analysis (the properties of the knot spectrum) to infer the physical properties of packaged bacteriophage genome. With their m long dsDNA genome packaged inside capsids whose diameter are in the 50 80 nm range, bacteriophages bring the highest level of compactification and arguably the simplest example of genome organization in living organisms [31, 40]. Cryo-em studies showed that DNA in bacteriophages epsilon-15 and phi-29 is neatly ordered in concentric shells close to the capsid wall, while an increasing level of disorder was measured when moving away from the capsid internal surface. On the other hand the detected spectrum of knots formed by DNA that is circularised inside the P4 viral capsid showed that DNA tends to be knotted with high probability, with a knot spectrum characterized by complex knots and biased towards torus knots and against achiral ones. Existing coarse-grain DNA models, while being capable of reproducing the salient physical aspects of free, unconstrained DNA, are not able to reproduce the experimentally observed features of packaged viral DNA. We show, using stochastic simulation techniques, that both the shell ordering and the knot spectrum can be reproduced quantitatively if one accounts for the preference of contacting DNA strands to juxtapose at a small twist angle, as in cholesteric liquid crystals

    Statistical Physics and Representations in Real and Artificial Neural Networks

    Full text link
    This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics

    Multiscale entanglement in ring polymers under spherical confinement

    Full text link
    The interplay of geometrical and topological entanglement in semiflexible knotted polymer rings confined inside a spherical cavity is investigated using advanced numerical methods. By using stringent and robust algorithms for locating knots, we characterize how the knot length lk depends on the ring contour length, Lc and the radius of the confining sphere, Rc . In the no- and strong- confinement cases we observe weak knot localization and complete knot delocalization, respectively. We show that the complex interplay of lk, Lc and Rc that seamlessly bridges these two limits can be encompassed by a simple scaling argument based on deflection theory. The same argument is used to rationalize the multiscale character of the entanglement that emerges with increasing confinement.Comment: 9 pages 9 figure
    • 

    corecore