1,513 research outputs found

    Majorana Edge States in Interacting Two-chain Ladders of Fermions

    Full text link
    In this work we study interacting spinless fermions on a two-chain ladder with inter-chain pair tunneling while single-particle tunneling is suppressed at low energy. The model embodies a Z2\mathbb{Z}_2 symmetry associated with the fermion parity on each chain. We find that when the system is driven to the strong-coupling phase by the pair tunneling, Majorana excitations appear on the boundary. Such Majorana edge states correspond to two-fold degeneracy of ground states distinguished by different fermion parity on each chain, thus representing a generalization of one-dimensional topological superconductors. We also characterize the stability of the ground state degeneracy against local perturbations. Lattice fermion models realizing such effective field theory are discussed.Comment: 6 pages, 1 figur

    Criticality in Translation-Invariant Parafermion Chains

    Full text link
    In this work we numerically study critical phases in translation-invariant ZN\mathbb{Z}_N parafermion chains with both nearest- and next-nearest-neighbor hopping terms. The model can be mapped to a ZN\mathbb{Z}_N spin model with nearest-neighbor couplings via a generalized Jordan-Wigner transformation and translation invariance ensures that the spin model is always self-dual. We first study the low-energy spectrum of chains with only nearest-neighbor coupling, which are mapped onto standard self-dual ZN\mathbb{Z}_N clock models. For 3≤N≤63\leq N\leq 6 we match the numerical results to the known conformal field theory(CFT) identification. We then analyze in detail the phase diagram of a N=3N=3 chain with both nearest and next-nearest neighbor hopping and six critical phases with central charges being 4/54/5, 1 or 2 are found. We find continuous phase transitions between c=1c=1 and c=2c=2 phases, while the phase transition between c=4/5c=4/5 and c=1c=1 is conjectured to be of Kosterlitz-Thouless type.Comment: published versio

    Topology and Criticality in Resonating Affleck-Kennedy-Lieb-Tasaki loop Spin Liquid States

    Full text link
    We exploit a natural Projected Entangled-Pair State (PEPS) representation for the resonating Affleck-Kennedy-Lieb-Tasaki loop (RAL) state. By taking advantage of PEPS-based analytical and numerical methods, we characterize the RAL states on various two-dimensional lattices. On square and honeycomb lattices, these states are critical since the dimer-dimer correlations decay as a power law. On kagome lattice, the RAL state has exponentially decaying correlation functions, supporting the scenario of a gapped spin liquid. We provide further evidence that the RAL state on the kagome lattice is a Z2\mathbb{Z}_2 spin liquid, by identifying the four topological sectors and computing the topological entropy. Furthermore, we construct a one-parameter family of PEPS states interpolating between the RAL state and a short-range Resonating Valence Bond state and find a critical point, consistent with the fact that the two states belong to two different phases. We also perform a variational study of the spin-1 kagome Heisenberg model using this one-parameter PEPS.Comment: 10 pages, 14 figures, published versio

    Visual Query Tuning: Towards Effective Usage of Intermediate Representations for Parameter and Memory Efficient Transfer Learning

    Full text link
    Intermediate features of a pre-trained model have been shown informative for making accurate predictions on downstream tasks, even if the model backbone is kept frozen. The key challenge is how to utilize these intermediate features given their gigantic amount. We propose visual query tuning (VQT), a simple yet effective approach to aggregate intermediate features of Vision Transformers. Through introducing a handful of learnable ``query'' tokens to each layer, VQT leverages the inner workings of Transformers to ``summarize'' rich intermediate features of each layer, which can then be used to train the prediction heads of downstream tasks. As VQT keeps the intermediate features intact and only learns to combine them, it enjoys memory efficiency in training, compared to many other parameter-efficient fine-tuning approaches that learn to adapt features and need back-propagation through the entire backbone. This also suggests the complementary role between VQT and those approaches in transfer learning. Empirically, VQT consistently surpasses the state-of-the-art approach that utilizes intermediate features for transfer learning and outperforms full fine-tuning in many cases. Compared to parameter-efficient approaches that adapt features, VQT achieves much higher accuracy under memory constraints. Most importantly, VQT is compatible with these approaches to attain even higher accuracy, making it a simple add-on to further boost transfer learning.Comment: Accepted by CVPR 2023. Cheng-Hao Tu and Zheda Mai contributed equally to this wor

    On the Importance and Applicability of Pre-Training for Federated Learning

    Full text link
    Pre-training is prevalent in nowadays deep learning to improve the learned model's performance. However, in the literature on federated learning (FL), neural networks are mostly initialized with random weights. These attract our interest in conducting a systematic study to explore pre-training for FL. Across multiple visual recognition benchmarks, we found that pre-training can not only improve FL, but also close its accuracy gap to the counterpart centralized learning, especially in the challenging cases of non-IID clients' data. To make our findings applicable to situations where pre-trained models are not directly available, we explore pre-training with synthetic data or even with clients' data in a decentralized manner, and found that they can already improve FL notably. Interesting, many of the techniques we explore are complementary to each other to further boost the performance, and we view this as a critical result toward scaling up deep FL for real-world applications. We conclude our paper with an attempt to understand the effect of pre-training on FL. We found that pre-training enables the learned global models under different clients' data conditions to converge to the same loss basin, and makes global aggregation in FL more stable. Nevertheless, pre-training seems to not alleviate local model drifting, a fundamental problem in FL under non-IID data.Comment: Preprin

    ImGeoNet: Image-induced Geometry-aware Voxel Representation for Multi-view 3D Object Detection

    Full text link
    We propose ImGeoNet, a multi-view image-based 3D object detection framework that models a 3D space by an image-induced geometry-aware voxel representation. Unlike previous methods which aggregate 2D features into 3D voxels without considering geometry, ImGeoNet learns to induce geometry from multi-view images to alleviate the confusion arising from voxels of free space, and during the inference phase, only images from multiple views are required. Besides, a powerful pre-trained 2D feature extractor can be leveraged by our representation, leading to a more robust performance. To evaluate the effectiveness of ImGeoNet, we conduct quantitative and qualitative experiments on three indoor datasets, namely ARKitScenes, ScanNetV2, and ScanNet200. The results demonstrate that ImGeoNet outperforms the current state-of-the-art multi-view image-based method, ImVoxelNet, on all three datasets in terms of detection accuracy. In addition, ImGeoNet shows great data efficiency by achieving results comparable to ImVoxelNet with 100 views while utilizing only 40 views. Furthermore, our studies indicate that our proposed image-induced geometry-aware representation can enable image-based methods to attain superior detection accuracy than the seminal point cloud-based method, VoteNet, in two practical scenarios: (1) scenarios where point clouds are sparse and noisy, such as in ARKitScenes, and (2) scenarios involve diverse object classes, particularly classes of small objects, as in the case in ScanNet200.Comment: ICCV'23; project page: https://ttaoretw.github.io/imgeonet
    • …
    corecore