8 research outputs found

    Understanding the Efficiency of Autonomous Nano- and Microscale Motors

    No full text
    We analyze the power conversion efficiency of different classes of autonomous nano- and micromotors. For bimetallic catalytic motors that operate by a self-electrophoretic mechanism, there are four stages of energy loss, and together they result in a power conversion efficiency on the order of 10<sup>–9</sup>. The results of finite element modeling agree well with experimental measurements of the efficiency of catalytic Pt–Au nanorod motors. Modifications of the composition and shape of bimetallic catalytic motors were predicted computationally and found experimentally to lead to higher efficiency. The efficiencies of bubble-propelled catalytic micromotors, magnetically driven flagellar motors, Janus micromotors driven by self-generated thermal gradients, and ultrasonically driven metallic micromotors are also analyzed and discussed

    Enhanced Transport into and out of Dead-End Pores

    No full text
    Dead-end micro- and nanoscale channels are ubiquitous in nature and are found in geological and biological systems subject to frequent disruptions. Achieving fluid flows in them is not possible through conventional pressure-driven mechanisms. Here we show that chemically driven convective flows leading to transport in and out of dead-end pores can occur by the phenomenon of “transient diffusioosmosis”. The advective velocity depends on the presence of an <i>in situ</i>-generated transient ion gradient and the intrinsic charge on the pore wall. The flows can reach speeds of 50 μm/s and cause extraction of otherwise-trapped materials. Our results illustrate that chemical energy, in the form of a transient salt gradient, can be transduced into mechanical motion with the pore wall acting as the pump. As discussed, the phenomena may underlie observed transport in many geological and biological systems involving tight or dead-end micro- and nanochannels

    Enhanced Transport into and out of Dead-End Pores

    No full text
    Dead-end micro- and nanoscale channels are ubiquitous in nature and are found in geological and biological systems subject to frequent disruptions. Achieving fluid flows in them is not possible through conventional pressure-driven mechanisms. Here we show that chemically driven convective flows leading to transport in and out of dead-end pores can occur by the phenomenon of “transient diffusioosmosis”. The advective velocity depends on the presence of an <i>in situ</i>-generated transient ion gradient and the intrinsic charge on the pore wall. The flows can reach speeds of 50 μm/s and cause extraction of otherwise-trapped materials. Our results illustrate that chemical energy, in the form of a transient salt gradient, can be transduced into mechanical motion with the pore wall acting as the pump. As discussed, the phenomena may underlie observed transport in many geological and biological systems involving tight or dead-end micro- and nanochannels

    Enhanced Transport into and out of Dead-End Pores

    No full text
    Dead-end micro- and nanoscale channels are ubiquitous in nature and are found in geological and biological systems subject to frequent disruptions. Achieving fluid flows in them is not possible through conventional pressure-driven mechanisms. Here we show that chemically driven convective flows leading to transport in and out of dead-end pores can occur by the phenomenon of “transient diffusioosmosis”. The advective velocity depends on the presence of an <i>in situ</i>-generated transient ion gradient and the intrinsic charge on the pore wall. The flows can reach speeds of 50 μm/s and cause extraction of otherwise-trapped materials. Our results illustrate that chemical energy, in the form of a transient salt gradient, can be transduced into mechanical motion with the pore wall acting as the pump. As discussed, the phenomena may underlie observed transport in many geological and biological systems involving tight or dead-end micro- and nanochannels

    Enhanced Transport into and out of Dead-End Pores

    No full text
    Dead-end micro- and nanoscale channels are ubiquitous in nature and are found in geological and biological systems subject to frequent disruptions. Achieving fluid flows in them is not possible through conventional pressure-driven mechanisms. Here we show that chemically driven convective flows leading to transport in and out of dead-end pores can occur by the phenomenon of “transient diffusioosmosis”. The advective velocity depends on the presence of an <i>in situ</i>-generated transient ion gradient and the intrinsic charge on the pore wall. The flows can reach speeds of 50 μm/s and cause extraction of otherwise-trapped materials. Our results illustrate that chemical energy, in the form of a transient salt gradient, can be transduced into mechanical motion with the pore wall acting as the pump. As discussed, the phenomena may underlie observed transport in many geological and biological systems involving tight or dead-end micro- and nanochannels

    Enhanced Transport into and out of Dead-End Pores

    No full text
    Dead-end micro- and nanoscale channels are ubiquitous in nature and are found in geological and biological systems subject to frequent disruptions. Achieving fluid flows in them is not possible through conventional pressure-driven mechanisms. Here we show that chemically driven convective flows leading to transport in and out of dead-end pores can occur by the phenomenon of “transient diffusioosmosis”. The advective velocity depends on the presence of an <i>in situ</i>-generated transient ion gradient and the intrinsic charge on the pore wall. The flows can reach speeds of 50 μm/s and cause extraction of otherwise-trapped materials. Our results illustrate that chemical energy, in the form of a transient salt gradient, can be transduced into mechanical motion with the pore wall acting as the pump. As discussed, the phenomena may underlie observed transport in many geological and biological systems involving tight or dead-end micro- and nanochannels

    Enhanced Transport into and out of Dead-End Pores

    No full text
    Dead-end micro- and nanoscale channels are ubiquitous in nature and are found in geological and biological systems subject to frequent disruptions. Achieving fluid flows in them is not possible through conventional pressure-driven mechanisms. Here we show that chemically driven convective flows leading to transport in and out of dead-end pores can occur by the phenomenon of “transient diffusioosmosis”. The advective velocity depends on the presence of an <i>in situ</i>-generated transient ion gradient and the intrinsic charge on the pore wall. The flows can reach speeds of 50 μm/s and cause extraction of otherwise-trapped materials. Our results illustrate that chemical energy, in the form of a transient salt gradient, can be transduced into mechanical motion with the pore wall acting as the pump. As discussed, the phenomena may underlie observed transport in many geological and biological systems involving tight or dead-end micro- and nanochannels

    Enhanced Transport into and out of Dead-End Pores

    No full text
    Dead-end micro- and nanoscale channels are ubiquitous in nature and are found in geological and biological systems subject to frequent disruptions. Achieving fluid flows in them is not possible through conventional pressure-driven mechanisms. Here we show that chemically driven convective flows leading to transport in and out of dead-end pores can occur by the phenomenon of “transient diffusioosmosis”. The advective velocity depends on the presence of an <i>in situ</i>-generated transient ion gradient and the intrinsic charge on the pore wall. The flows can reach speeds of 50 μm/s and cause extraction of otherwise-trapped materials. Our results illustrate that chemical energy, in the form of a transient salt gradient, can be transduced into mechanical motion with the pore wall acting as the pump. As discussed, the phenomena may underlie observed transport in many geological and biological systems involving tight or dead-end micro- and nanochannels
    corecore