7 research outputs found

    Daily Changes in Composition and Diversity of the Intestinal Microbiota in Patients with Anorexia Nervosa: A Series of Three Cases

    Get PDF
    Anorexia nervosa, a severe psychiatric illness, is associated with an intestinal microbial dysbiosis. Individual microbial signatures dominate in healthy samples, even over time and under controlled conditions, but whether microbial markers of the disorder overcome inter-individual variation during the acute stage of illness or renourishment is unknown. We characterized daily changes in the intestinal microbiota in three acutely ill patients with anorexia nervosa over the entire course of hospital-based renourishment and found significant, patient-specific changes in microbial composition and diversity. This preliminary case series suggests that even in a state of pathology, individual microbial signatures persist in accounting for the majority of intestinal microbial variation

    An Aberrant Microbiota is not Strongly Associated with Incidental Colonic Diverticulosis

    Get PDF
    Colonic diverticula are protrusions of the mucosa through weak areas of the colonic musculature. The etiology of diverticulosis is poorly understood, but could be related to gut bacteria. Using mucosal biopsies from the sigmoid colon of 226 subjects with and 309 subjects without diverticula during first-time screening colonoscopy, we assessed whether individuals with incidental colonic diverticulosis have alternations in the adherent bacterial communities in the sigmoid colon. We found little evidence of substantial associations between the microbial community and diverticulosis among cases and controls. Comparisons of bacterial abundances across all taxonomic levels showed differences for phylum Proteobacteria (p = 0.038) and family Comamonadaceae (p = 0.035). The r-squared values measuring the strength of these associations were very weak, however, with values ~2%. There was a similarly small association between the abundance of each taxa and total diverticula counts. Cases with proximal only diverticula and distal only diverticula likewise showed little difference in overall microbiota profiles. This large study suggests little association between diverticula and the mucosal microbiota overall, or by diverticula number and location. We conclude that the mucosal adherent microbiota community composition is unlikely to play a substantial role in development of diverticulosis

    Sequence variant analysis reveals poor correlations in microbial taxonomic abundance between humans and mice after gnotobiotic transfer

    Get PDF
    Transplanting human gut microbiotas into germ-free (GF) mice is a popular approach to disentangle cause-and-effect relationships between enteric microbes and disease. Algorithm development has enabled sequence variant (SV) identification from 16S rRNA gene sequence data. SV analyses can identify which donor taxa colonize recipient GF mice, and how SV abundance in humans is replicated in these mice. Fecal microbiotas from 8 human subjects were used to generate 77 slurries, which were transplanted into 153 GF mice. Strong correlations between fecal and slurry microbial communities were observed; however, only 42.15 ± 9.95% of SVs successfully transferred from the donor to the corresponding recipient mouse. Firmicutes had a particularly low transfer rate and SV abundance was poorly correlated between donor and recipient pairs. Our study confirms human fecal microbiotas colonize formerly GF mice, but the engrafted community only partially resembles the input human communities. Our findings emphasize the importance of reporting a standardized transfer rate and merit the exploration of other animal models or in silico tools to understand the relationships between human gut microbiotas and disease

    Gut Microbiota and Host Plasma Metabolites in Association with Blood Pressure in Chinese Adults

    Get PDF
    Animal studies have revealed gut microbial and metabolic pathways of blood pressure (BP) regulation, yet few epidemiological studies have collected microbiota and metabolomics data in the same individuals. In a population-based, Chinese cohort who did not report antihypertension medication use (30-69 years, 54% women), thus minimizing BP treatment effects, we examined multivariable-adjusted (eg, diet, physical activity, smoking, kidney function), cross-sectional associations between measures of gut microbiota (16S rRNA [ribosomal ribonucleic acid], N=1003), and plasma metabolome (liquid chromatography-mass spectrometry, N=434) with systolic (SBP, mean [SD]=126.0 [17.4] mm Hg) and diastolic BP (DBP [80.7 (10.7) mm Hg]). We found that the overall microbial community assessed by principal coordinate analysis varied by SBP and DBP (permutational multivariate ANOVA P<0.05). To account for strong correlations across metabolites, we first examined metabolite patterns derived from principal component analysis and found that a lipid pattern was positively associated with SBP (linear regression coefficient [95% CI] per 1 SD pattern score: 2.23 [0.72-3.74] mm Hg) and DBP (1.72 [0.81-2.63] mm Hg). Among 1104 individual metabolites, 34 and 39 metabolites were positively associated with SBP and DBP (false discovery rate-adjusted linear model P<0.05), respectively, including linoleate, palmitate, dihomolinolenate, 8 sphingomyelins, 4 acyl-carnitines, and 2 phosphatidylinositols. Subsequent pathway analysis showed that metabolic pathways of long-chain saturated acylcarnitine, phosphatidylinositol, and sphingomyelins were associated with SBP and DBP (false discovery rate-adjusted Fisher exact test P<0.05). Our results suggest potential roles of microbiota and metabolites in BP regulation to be followed up in prospective and clinical studies

    Circulating short-chain fatty acids are positively associated with adiposity measures in chinese adults

    Get PDF
    Epidemiological studies suggest a positive association between obesity and fecal short-chain fatty acids (SCFAs) produced by microbial fermentation of dietary carbohydrates, while animal models suggest increased energy harvest through colonic SCFA production in obesity. However, there is a lack of human population-based studies with dietary intake data, plasma SCFAs, gut microbial, and anthropometric data. In 490 Chinese adults aged 30–68 years, we examined the associations between key plasma SCFAs (butyrate/isobutyrate, isovalerate, and valerate measured by non-targeted plasma metabolomics) with body mass index (BMI) using multivariable-adjusted linear regression. We then assessed whether overweight (BMI ≥ 24 kg/m2 ) modified the association between dietary-precursors of SCFAs (insoluble fiber, total carbohydrates, and high-fiber foods) with plasma SCFAs. In a sub-sample (n = 209) with gut metagenome data, we examined the association between gut microbial SCFA-producers with BMI. We found positive associations between butyrate/isobutyrate and BMI (p-value < 0.05). The associations between insoluble fiber and butyrate/isobutyrate differed by overweight (p-value < 0.10). There was no statistical evidence for an association between microbial SCFA-producers and BMI. In sum, plasma SCFAs were positively associated with BMI and that the colonic fermentation of fiber may differ for adults with versus without overweight

    Associations of sodium and potassium consumption with the gut microbiota and host metabolites in a population-based study in Chinese adults

    Get PDF
    Background: There is increasing evidence that sodium consumption alters the gut microbiota and host metabolome in murine models and small studies in humans. However, there is a lack of population-based studies that capture large variations in sodium consumption as well as potassium consumption. Objective: We examined the associations of energy-adjusted dietary sodium (milligrams/kilocalorie), potassium, and sodium-to-potassium (Na/K) ratio with the microbiota and plasma metabolome in a well-characterized Chinese cohort with habitual excessive sodium and deficient potassium consumption. Methods: We estimated dietary intakes from 3 consecutive validated 24-h recalls and household inventories. In 2833 adults (18-80 y old, 51.2% females), we analyzed microbial (genus-level 16S ribosomal RNA) between-person diversity, using distance-based redundancy analysis (dbRDA), and within-person diversity and taxa abundance using linear regression, accounting for geographic variation in both. In a subsample (n = 392), we analyzed the overall metabolome (dbRDA) and individual metabolites (linear regression). P values for specific taxa and metabolites were false discovery rate adjusted (q-value). Results: Sodium, potassium, and Na/K ratio were associated with microbial between-person diversity (dbRDA P < 0.01) and several specific taxa with large geographic variation, including pathogenic Staphylococcus and Moraxellaceae, and SCFA-producing Phascolarctobacterium and Lachnospiraceae (q-value < 0.05). For example, sodium and Na/K ratio were positively associated with Staphylococcus and Moraxellaceae in Liaoning, whereas potassium was positively associated with 2 genera from Lachnospiraceae in Shanghai. Additionally, sodium, potassium, and Na/K ratio were associated with the overall metabolome (dbRDA P ≤ 0.01) and several individual metabolites, including butyrate/isobutyrate and gut-derived phenolics such as 1,2,3-benzenetriol sulfate, which was negatively associated with sodium in Guizhou (q-value < 0.05). Conclusions: Our findings suggest that sodium and potassium consumption is associated with taxa and metabolites that have been implicated in cardiometabolic health, providing insights into the potential roles of gut microbiota and host metabolites in the pathogenesis of sodium- and potassium-associated diseases. More studies are needed to confirm our results
    corecore