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ABSTRACT: Animal studies have revealed gut microbial and metabolic pathways of blood pressure (BP) regulation, yet few 
epidemiological studies have collected microbiota and metabolomics data in the same individuals. In a population-based, 
Chinese cohort who did not report antihypertension medication use (30–69 years, 54% women), thus minimizing BP 
treatment effects, we examined multivariable-adjusted (eg, diet, physical activity, smoking, kidney function), cross-sectional 
associations between measures of gut microbiota (16S rRNA [ribosomal ribonucleic acid], N=1003), and plasma metabolome 
(liquid chromatography-mass spectrometry, N=434) with systolic (SBP, mean [SD]=126.0 [17.4] mm Hg) and diastolic BP 
(DBP [80.7 (10.7) mm Hg]). We found that the overall microbial community assessed by principal coordinate analysis varied 
by SBP and DBP (permutational multivariate ANOVA P<0.05). To account for strong correlations across metabolites, we 
first examined metabolite patterns derived from principal component analysis and found that a lipid pattern was positively 
associated with SBP (linear regression coefficient [95% CI] per 1 SD pattern score: 2.23 [0.72–3.74] mm Hg) and DBP 
(1.72 [0.81–2.63] mm Hg). Among 1104 individual metabolites, 34 and 39 metabolites were positively associated with SBP 
and DBP (false discovery rate–adjusted linear model P<0.05), respectively, including linoleate, palmitate, dihomolinolenate, 8 
sphingomyelins, 4 acyl-carnitines, and 2 phosphatidylinositols. Subsequent pathway analysis showed that metabolic pathways 
of long-chain saturated acylcarnitine, phosphatidylinositol, and sphingomyelins were associated with SBP and DBP (false 
discovery rate–adjusted Fisher exact test P<0.05). Our results suggest potential roles of microbiota and metabolites in 
BP regulation to be followed up in prospective and clinical studies. (Hypertension. 2021;77:706–717. DOI: 10.1161/
HYPERTENSIONAHA.120.16154.) • Data Supplement
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Hypertension is a leading modifiable risk factor for 
cardiovascular disease and mortality.1 Despite 
numerous clinical and public health efforts to curb 

the epidemic, the worldwide prevalence of hypertension 
has continued to increase over the past decade2 and the 
prevalence of controlled hypertension has remained low.3

The blood pressure (BP) regulatory system is multi-
factorial, involving interactions among host genetics,4 
sociodemographic factors, and diet.5 The gut microbiota 
and host metabolome, which may reflect these complex 

interactions,6,7 have been demonstrated to play funda-
mental roles in BP regulation in animal models8–11 and 
humans.12–14 In particular, the metabolome reflects a thor-
ough snapshot of various metabolic processes, allowing 
the identification of novel biomarkers and pathogenic 
pathways of elevated BP.15 For example, the microbiota-
mediated serum 4-hydroxyhippurate is positively associ-
ated with incident hypertension in blacks.16 Additionally, 
reductions in the overall gut microbial diversity and rela-
tive abundance of specific microbial groups, including 
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Prevotella and Coprococcus, are associated with hyper-
tension in animal models11,17 and humans,13,14,18 albeit with 
small sample sizes. However, there is a lack of population-
based studies that include microbial and metabolomic 
data along with phenotypic data, which is necessary to 
infer how microbiota influence host physiology through 
bioactive metabolites. Moreover, there is a need for 
studies conducted in populations with large burdens of 
hypertension but low rates of diagnosis and treatment for 
hypertension for the assessment of natural history of BP.

To this end, we used a well-characterized adult cohort 
from the 2015 China Health and Nutrition Survey 
(CHNS) to conduct 2 primary analyses: the association 
between (1) gut microbiota and (2) plasma metabolome 
with BP. We selected the CHNS because China has the 
greatest absolute burden of hypertension around the 
world19 coupled with a high rates of undiagnosed and 
untreated hypertension,20 making China an ideal context 
for studying BP while minimizing the medication effects.

METHODS
The data and code that support the findings of this study are 
available to researchers upon request. All phenotypic data can 
be accessed at the CHNS website (https://www.cpc.unc.edu/
projects/china).

Study Sample
We used data from the 2015 CHNS. The CHNS is a prospec-
tive, household-based study across 12 provinces and 3 mega-
cities, which vary substantially in geography, customs, economic 
development, and health indicators.21 Informed consent was 
obtained for all participants. The study met the standards for 
the ethical treatment of participants and was approved by the 
Institutional Review Boards of the University of North Carolina 
at Chapel Hill and the National Institute for Nutrition and 
Health, Chinese Center for Disease Control and Prevention. 
Participants of the 2015 survey aged 30 to 69 years from four 
southern provinces (Henan, Hunan, Guizhou, Guangxi) with BP 
data and gut microbiome or plasma metabolome data were eli-
gible for analysis (N=1285, Figure S1 in the Data Supplement). 
We excluded participants who were pregnant (n=1), self-
reported use of antihypertension medication (n=99), or had 
missing covariates (n=86). For microbiota analysis, we addi-
tionally excluded 35 participants who currently used antibiotics, 
had diarrhea, inflammatory bowel disease, irritable bowel syn-
drome, or bowel removal. For metabolites analysis, we addition-
ally excluded 16 participants who had detectable levels of four 
cardiovascular disease drug metabolites in plasma: metoprolol 
acid metabolite, alpha-hydroxymetoprolol, nifedipine, and val-
sartan. The total analysis sample had 1082 adults, with 1003 
and 434 adults included in the microbiota and metabolomics 
analysis samples, respectively.

Blood Pressure
Resting BP was measured by experienced physicians, who had 
completed a 7-day training session and passed a comprehen-
sive reliability test. After a 5-minute seated rest, systolic (SBP) 
and diastolic BP (DBP) were measured in triplicate (30-sec-
ond interval between cuff inflation) using a standard mercury 
sphygmomanometer (measuring range, 0–300 mm Hg) on the 
right arm (heart level in sitting position) rested on table with 

Nonstandard Abbreviations and Acronyms

ARIC Atherosclerosis Risk in Communities
BMI body mass index
BDL below detection limit
BP blood pressure
CARDIA  Coronary Artery Risk Development in 

Young Adults
CHNS China Health and Nutrition Survey
DBP diastolic BP
FDR false discovery rate
INTERMAP  International Population Study on 

Macronutrients and Blood Pressure
LDL-C low-density lipoprotein cholesterol
PCoA principal coordinate analysis
SBP systolic BP

Novelty and Significance

What Is New?
• Our study fills the gap in population-based stud-

ies investigating both gut microbiota and circulating
metabolomics in association with blood pressure (BP).

• Our sample is unique in that many participants with
hypertension were untreated, allowing us to minimize
the medication effects.

What Is Relevant?
• Our findings support a difference in the overall gut

microbiota by BP.

• We identified a novel lipid pattern and several lipid
metabolites (eg, sphingomyelins, acyl-carnitines) posi-
tively associated with BP.

Summary
In a well-characterized Chinese adult cohort, we 
showed associations between gut microbiota and 
plasma metabolites with BP, indicating potential roles 
of microbial and metabolites groups, like lipids, in BP 
regulation.
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palm face up. The cuff size was selected according to standard-
ized protocol.22 We used the average of the 3 readings as our 
measure of SBP and DBP. Hypertension was defined as SBP 
≥140 mm Hg, DBP ≥90 mm Hg, or self-reported diagnosis.23

Gut Microbiota
Participants collected stool samples at home using the QIAGEN 
collection kit (QIAGEN, Hilden, Germany) following standard-
ized protocol. Samples were temporarily stored at foam boxes 
with frozen cold packs and brought to local community or village 
clinics immediately, where the samples were stored at –20 °C. 
Then, samples were transported in cold-chain to laboratory and 
frozen at –80 °C until processing. Samples were randomized for 
sequencing at Novogene Bioinformatics Technology, Co, Ltd, 
Tianjin, China, so that batches were not related to specific col-
lection centers. Bacterial DNA was extracted using TIANGEN 
DNA extraction kits (TIANGEN Biotech, Beijing, China). 
Sequencing for 16S rRNA (ribosomal ribonucleic acid) target-
ing the V4 hypervariable region was performed using primers 
515F/806R on the Illumina MiSeq PE250 platform. The raw 
sequencing reads were processed using the QIIME pipeline,24 
with forward and reverse reads merged with fastq-join and fil-
tered using a minimum quality score of 20. No sample was 
filtered out due to low quality. Operational Taxonomic Units 
were identified using open-reference method based on a 
threshold of 0.97, with chimeric Operational Taxonomic Units 
detected by ChimeraSlayer being removed.25 Taxonomy was 
assigned based on the SILVA databases (Release 128). We 
rarefied the resulting taxonomic abundances of 1008 genera 
to 21 600 sequences/sample to correct for different sequenc-
ing depth (21 648–89 427 sequences/sample) before log10 
transformation.

Plasma Metabolomics
Fasting blood samples were collected within 3-days of fecal 
sample collection by clinicians following the same protocol for 
the collection, processing, and storage. Ethylenediamine tet-
raacetic acid was used as an anticoagulant and plasma was 
immediately separated through centrifugation and stored at 
–80 °C. Detection and quantification of metabolites was per-
formed by the partner campus of Metabolon Inc. in China 
using a nontargeted platform consisting of a Waters ACQUITY 
ultrahigh performance liquid chromatographer (Milford, MA) 
and a Thermo Scientific Q-Exactive high-resolution mass 
spectrometer (Waltham, MA).7 Methanol solvent was used 
to extract plasma samples, which were analyzed with several 
types of controls, including pooled experiment samples as 
technical replicate and extracted water samples as process 
blanks. Signals were extracted, peak identified, and processed 
using Metabolon’s software and hardware. Metabolites were 
identified by comparing to the mass-to-charge ratio, rendi-
tion time/index, and chromatographic data in the Metabolon 
reference library of purified standards and labeled according 
to Metabolomics Standards Initiative defined identification 
levels.26 Of the 1104 detected and quantified metabolites, we 
categorized 131 metabolites that were below detection limits 
(BDL) in 25% to 50% samples to 3 groups (BDL, <median, 
≥median) and 99 metabolites with >50% of BDL to binary vari-
ables (BDL, ≥detection limit). For 874 metabolites with ≤25%

of BDL, we rescaled the raw area count of each metabolite to a 
median of one and imputed values BDL by the minimum value 
before log2 transformation.

Covariates
Sociodemographic and behavioral information were collected 
using standard questionnaires administered by interviewers, 
including age, sex, education (yes/no completed high school), 
per-capita household income (household income/number of 
household member), ever smoking (yes/no), alcohol intake in 
the past year (yes/no), and total physical activity (metabolic 
equivalents/wk). We assessed community-level urbanization 
using a validated urbanization index that encompasses 12 
dimensions of urbanization,27 including population density, 
health infrastructure, sanitation, and transportation. We included 
2 validated measures of diet, total energy intake (kcal/day),28 
and sodium intake (mg/day),29 collected using 3-consecutive 
24-hour diet recalls and household food inventories. We also
included 3 clinically measured health markers: (1) for kidney
function, we used fasting serum creatinine concentration mea-
sured by picric acid method on Hitachi 7600 (Tokyo, Japan)
to calculate estimated glomerular filtration rate (mL/min per
1.73m2) based on the Chronic Kidney Disease Epidemiology
Collaboration equation30; (2) LDL-C (low-density lipoprotein
cholesterol, mg/dL) was measured by the polyethylene glycol-
modified enzyme method on Hitachi 7600; (3) we calculated
body mass index (BMI) from weight over squared height (kg/
m2) measured using calibrated beam scales and portable sta-
diometers, respectively.

Statistical Analysis
Primary outcomes were SBP and DBP. In the microbiota analy-
sis sample, we first analyzed the overall gut microbiota by exam-
ining the associations of genus-level within-person microbial 
diversity (α-diversity), measured by Shannon index and rich-
ness,31,32 and between-person diversity (β-diversity), assessed 
by principal coordinate analysis (PCoA) based on Bray-Curtis 
dissimilarity matrix,33 with SBP and DBP using linear regres-
sion and permutational multivariate ANOVA with 999 permu-
tations,34 respectively. PCoA axis score is a weighted sum of 
genera scores (Table S1). Then, we quantified the association 
between each of the first four PCoA axes, explaining 8.61%, 
5.58%, 3.54%, and 3.16% of microbial variability, respectively, 
as well as 1008 specific genera with SBP and DBP using 
linear regression. We treated 110 genera detected in ≥25% 
of the sample as continuous variables and dichotomized the 
rest 898 rare genera to presence/absence. We adjusted all 
analyses for the following potential confounders in Model 1 
based on a priori knowledge: age, sex, provinces, urbanization 
index (tertiles),35 education, per-capita household income (ter-
tiles), total energy intake, animal-source food consumption,36 
sodium consumption,37 total physical activity (tertiles), tobacco 
use, alcohol consumption, and estimated glomerular filtration 
rate.38 As BMI is a potential mediator for microbiota-BP rela-
tionship, we additionally adjusted for BMI in Model 2 as a sensi-
tivity analysis to test whether the association was independent 
of BMI. Additionally, as lipid profile is correlated with BP and 
microbiota, we conducted a post hoc analysis that additionally 
adjusted for the atherogenic LDL-C.



In the metabolomics analysis sample, we first analyzed the 
overall metabolome by separately grouping 874 metabolites 
(continuous variables, ≤25% BDL) into uncorrelated patterns 
to account for complex correlations across metabolites, using 
principal component analysis followed by a varimax rotation to 
improve interpretation.39 Based on 3 criteria: eigenvalues >1, 
the point of inflection in scree plot, and interpretability,40 we 
selected 3 metabolite patterns (Table S2). Pattern score is a 
weighted sum of rotated and inverse factor loadings. Then, 
we assessed the association between each metabolite pat-
tern, as well as 1104 individual metabolites with SBP and 
DBP, using the above-mentioned multivariable-adjusted linear 
models adjusting for batch. We used a Wald test to assess the 
statistical significance of 131 metabolites with 3 categories 
(BDL, <median, ≥median). Based on model 1 results for indi-
vidual metabolites, we calculated pathway enrichment score 
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] reflecting the degree to which a given pathway 

was associated with SBP or DBP, where k and n are numbers 
of BP-associated metabolites in the given pathway and all 
pathways, respectively, and m and N are numbers of tested 
metabolites in the given pathway and all pathways, respectively. 
We performed a Fisher exact test41 to evaluate whether the 
presence of BP-associated metabolites among identified com-
pounds from a particular metabolic pathway was greater than 
expected by chance.

In a subsample of participants with microbiota and metab-
olite data (n=355), we examined the association between 
BP-associated microbiota features and BP-associated metab-
olites using linear models to understand the intercorrelation 
between microbiota and metabolites. Next, we conducted ran-
dom forest regression (100 trees) which allows interaction across 
microbiota and metabolites,42 followed by 5 iterations of 2-fold 
cross-validation modified paired t test of root mean squared 
errors, a powerful test to compare the performance of learning 
algorithms with acceptable type I error,43 to provide insight into 
which of the following data as a whole had the strongest asso-
ciation with BP: host factors (14 model 1 covariates), microbiota 
(1008 genera), metabolites (1104 metabolites), microbiota+host 
factors, metabolites+host factors, microbiota+metabolites, and 
microbiota+metabolites+host factors.

We adjusted P values for multiple comparisons using 
Benjamini-Hochberg method (false discovery rate, FDR)44 in 
comparisons across taxa, metabolites, and metabolic pathways 
for SBP and DBP separately. All statistical tests were 2-sided 
with a significance level of 0.05. We used R 3.6.0 (http://
www.r-project.org) and Python 3.5.1 (https://www.python.org) 
for data analysis.

RESULTS
Our sample had large variation in SBP (mean [SD]: 126.0 
[17.4] mm Hg) and DBP (80.7 [10.7] mm Hg), with 27.6% 
prevalence of hypertension (Table S3).

We first assessed the overall gut microbial measures. 
Within-person microbial diversity (Shannon index and 
richness) was not associated with SBP or DBP (Table 
S4, P=0.45–0.97). Between-person microbial diversity 
assessed by PCoA varied by SBP (Figure; permutational 

multivariate ANOVA R2=0.20%, P=0.002) and 
DBP (Figure S2; permutational multivariate ANOVA 
R2=0.14%, P<0.05). Only the fourth PCoA axis showed 
a clear separation of SBP (Figure), with higher axis 

Figure. Microbial between-person diversity (β-diversity) 
assessed using principal coordinate analysis by systolic 
blood pressure (SBP). 
Centroids illustrate the 95% CI for the mean location of each 
SBP (mm Hg) quartile. Vectors for 10 taxa with the greatest 
contributions to MDS (multidivisional scaling) 4 indicate the 
directions and strengths of their correlations with MDS4 (Table 
S1). In permutational multivariate ANOVA (N=1003), SBP had 
R2 of 0.20% and P value of 0.002, after adjusting for age, sex, 
provinces, urbanization index, per-capita household income, 
education, total energy intake, animal-source food, sodium, physical 
activity, smoking, alcohol, and estimated glomerular filtration rate. 
Results remained the same after additional adjustment of body 
mass index.
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score associated with higher SBP (Table S5). This axis 
was positively correlated with Rothia, Serratia, Entero-
bacteriaceae, Leuconostocaceae, and Fusobacterium 
and negatively correlated with Coprococcus, Adlercreut-
zia, Eggerthella, and Raistonia. However, after correc-
tion for multiple hypothesis testing, none of the 1008 
specific genera were associated with SBP or DBP at 
FDR-adjusted P<0.05 (Table S6). We observed similar 
results after additionally adjusted for LDL-C (Table S7 
through S9).

In plasma metabolite analysis, we identified 3 bio-
logically possible patterns using principal component 
analysis that each explained 9.63%, 4.79%, and 4.69% 
of variance (Table 1). The second pattern characterized 
by lipids, like linoleate, palmitate, and oleate/vaccinate 
was positively associated with SBP (linear model coef-
ficient [95% CI] per 1 SD pattern score: 2.23 [0.72–
3.74] mm Hg) and DBP (1.72 [0.81–2.63] mm Hg). The 
results were slightly attenuated by adjustment of BMI 
(SBP: 1.88 [0.38–3.38] mm Hg; DBP: 1.45 [0.55–
2.35] mm Hg).

To identify whether specific metabolites contribut-
ing to this lipid pattern drove the associations with SBP 
and DBP, we examined 1104 metabolites (Table S10 
through S12) and found that 34 and 39 metabolites 
were associated with SBP (Table 2) and DBP (Table 3) 
at Model 1 FDR-adjusted P<0.05, respectively, includ-
ing 8 sphingomyelins, 4 acyl-carnitines, and cholesterol. 
Among these SBP- and DBP-associated metabolites, 
8 (23.5%) and 19 (48.7%) metabolites, respectively, 

had high loadings (>0.4) for the lipid pattern, including 
acyl-carnitines (C16, C26, C14, and C12), 1-palmito-
leoylglycerol (16:1), and dihomolinolenate (20:3n3 or 
3n6), which were positively associated with both BP 
measures. In contrast, we saw noticeably fewer SBP- 
and DBP-associated metabolites with high loadings for 
the other two metabolite patterns (0%–11.8%). After 
adjusting for BMI, only 9 and 17 metabolites remained 
statistically significantly associated with SBP and DBP 
(model 2 FDR-adjusted P<0.05), respectively, includ-
ing sphingomyelins (d18:1/23:0, d18:1/24:0, and 
d18:2/24:2) and acyl-carnitines (C16 and C14). After 
adjusting for LDL-C, results for metabolite patterns 
were similar to main model results (Table S13) and only 
19 metabolites remained statistically significantly asso-
ciated with DBP (Table S14).

In pathway analysis that tested whether the number 
of positive or negative associations between BP and 
metabolites from a particular metabolic pathway was 
more than expected by chance (Table 4, Table S15), 
we found that diacylglycerol, acylcarnitine (long-chain 
saturated), phosphatidylcholine, phosphatidylinositol, 
sphingomyelins metabolic pathways were associated 
with SBP (FDR-adjusted P<0.05); and corticosteroids, 
acylcarnitine (long-chain saturated and median chain), 
monoacylglycerol, phosphatidylinositol, and sphingomy-
elins metabolic pathways were associated with DBP.

In a subsample of 355 participants with similar dis-
tributions of SBP (123.5 [16.7] mm Hg) and DBP (79.8 
[9.9]) to the full sample (Table S16), we conducted 

Table 1. Association Between Metabolite Patterns With SBP and DBP (mm Hg), Coefficient (95% CI)

Metabolite 
pattern Metabolites contributing to each pattern Eigenvalue

Variance 
explained

SBP DBP

Model 1 Model 2 Model 1 Model 2

Pattern 1 
(nucleotide, 
amino acid, and 
peptide)

Pseudouridine; 2,3-dihydroxy-
5-methylthio-4-pentenoate; 
N-acetylthreonine; N,N-
dimethyl-pro-pro; C-glycosyl-
tryptophan;

orotidine; hydroxy-
N6,N6,N6- 
trimethyllysine; 5,6-dihy-
drouridine;  
dimethylarginine 
(asymmetric+symmetric); 
N6-acetyllysine

84.19 9.63% 1.81 (–0.24 
to 3.86)

1.58 (–0.44 
to 3.60)

0.24 
(–1.01 to 
1.49)

0.06 (–1.16 
to 1.28)

Pattern 2  
(lipids, espe-
cially long-chain 
fatty acids)

Linoleate (18:2n6); palmitate 
(16:0); oleate/vaccenate 
(18:1); 10-heptadecenoate 
(17:1n7); docosapentaenoate 
(22:5n3); hexadecadienoate 
(16:2n6);

10-nonadecenoate 
(19:1n9); margarate (17:0); 
dihomolinoleate (20:2n6); 
dihomolinolenate (20:3n3 
or 3n6)

41.83 4.79% 2.23 (0.72 
to 3.74)†

1.88 (0.38 
to 3.38)*

1.72 
(0.81 to 
2.63)†

1.45 (0.55 
to 2.35)†

Pattern 3 (sphin-
gomyelins, 
eicosanoid, 
short-chain 
fatty acids, and 
branched-chain 
amino acids)

Sphingomyelin (d18:2/23:0, 
d18:1/23:1, d17:1/24:1); 
3-methyl-2-oxobutyrate; leu-
kotriene B4; 5-hydroxyeico-
satetraenoic acid; methionine 
sulfoxide; butyrate/isobutyrate 
(4:0);

4-methyl-2-oxopentanoate; 
1-(1-enyl-oleoyl)-GPE 
(P-18:1); 1-(1-enyl-
palmitoyl)-GPE (P-16:0); 
3-methyl-2-oxovalerate

40.99 4.69% 0.24 (–1.57 
to 2.05)

–0.02 
(–1.80 to 
1.77)

0.14 
(–0.96 to 
1.24)

–0.05 
(–1.13 to 
1.02)

Patterns were derived from principal component analysis followed by a varimax rotation of 874 metabolites (N=434). Coefficient indicates SBP or DBP associated 
with each 1 SD of metabolites pattern score in linear regression. Contributing metabolites are metabolites with the highest absolute loadings for the respective pattern 
(Table S2). Model 1 was adjusted for age, sex, provinces, batch, urbanization index, per-capita household income, education, total energy intake, animal-source food, 
sodium, physical activity, smoking, alcohol, and estimated glomerular filtration rate. Model 2 was additionally adjusted for body mass index. DBP indicates diastolic BP; 
GPE, glycerophosphoethanolamine; and SBP, systolic BP.

*P<0.05.
†P<0.01.



Table 2. Association Between Individual Metabolites and SBP (mm Hg)

Metabolites Pathway

Loading 
in lipid 
pattern*

Model 1 Model 2

Coefficient (95% CI) Q value Coefficient (95% CI) Q value

Tricosanoyl sphingomyelin (d18:1/23:0)† Sphingomyelins … 7.56 (4.52 to 10.61) 0.002 6.53 (3.43 to 9.62) 0.015

Lignoceroyl sphingomyelin (d18:1/24:0)† Sphingomyelins … 6.37 (3.59 to 9.14) 0.005 5.61 (2.83 to 8.39) 0.024

Palmitoylcarnitine (C16)† Fatty acid metabolism (acyl 
carnitine, long-chain saturated)

0.50 7.26 (3.97 to 10.56) 0.007 6.95 (3.71 to 10.2) 0.015

1-myristoyl-2-arachidonoyl-GPC 
(14:0/20:4)†

PC … 4.34 (2.32 to 6.37) 0.007 3.53 (1.45 to 5.61) 0.059

Sphingomyelin (d18:2/24:2)† Sphingomyelins … 4.53 (2.41 to 6.64) 0.007 4.46 (2.38 to 6.54) 0.015

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2)† PI … 5.83 (3.02 to 8.64) 0.010 5.38 (2.59 to 8.16) 0.037

1-palmitoyl-2-arachidonoyl-GPC 
(16:0/20:4n6)†

PC … 7.91 (4.01 to 11.82) 0.010 6.7 (2.77 to 10.63) 0.059

1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4)† PI … 4.96 (2.51 to 7.41) 0.010 4.44 (2.01 to 6.87) 0.046

Sphingomyelin (d18:1/21:0, d17:1/22:0, 
d16:1/23:0)†

Sphingomyelins … 6.38 (3.28 to 9.49) 0.010 5.03 (1.82 to 8.25) 0.088

Behenoyl sphingomyelin (d18:1/22:0)† Sphingomyelins … 7.35 (3.57 to 11.14) 0.014 5.91 (2.05 to 9.77) 0.092

Sphingomyelin (d18:1/14:0, d16:1/16:0)† Sphingomyelins … 7.21 (3.4 to 11.01) 0.019 5.65 (1.75 to 9.55) 0.118

Cerotoylcarnitine (C26)† Fatty acid metabolism (acyl 
carnitine, long-chain saturated)

0.42 4.29 (2.02 to 6.56) 0.019 3.91 (1.66 to 6.16) 0.059

Pantothenate (vitamin B5) Pantothenate and coenzyme 
A metabolism

… 7.77 (3.63 to 11.91) 0.019 6.86 (2.74 to 10.97) 0.064

N2,N2-dimethylguanosine Purine metabolism, guanine 
containing

… 8.74 (3.99 to 13.49) 0.020 8.09 (3.4 to 12.78) 0.059

Cholesterol† Sterol … 8.48 (3.89 to 13.07) 0.020 7.67 (3.12 to 12.22) 0.062

Sphingomyelin (d18:2/14:0, d18:1/14:1)† Sphingomyelins … 5.75 (2.58 to 8.91) 0.022 4.57 (1.36 to 7.79) 0.121

Adrenate (22:4n6) Long-chain polyunsaturated 
fatty acid (n3 and n6)

0.71 3.15 (1.36 to 4.93) 0.028 2.9 (1.14 to 4.67) 0.066

1-palmitoleoylglycerol (16:1)† Monoacylglycerol 0.57 2.26 (0.98 to 3.53) 0.028 1.75 (0.45 to 3.05) 0.143

1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) PC … 3.57 (1.54 to 5.59) 0.028 3.01 (0.98 to 5.04) 0.107

Myristoylcarnitine (C14)† Fatty acid metabolism (acyl 
carnitine, long-chain saturated)

0.53 2.96 (1.27 to 4.64) 0.029 3.01 (1.35 to 4.66) 0.046

Branched-chain, straight-chain, or cyclo-
propyl 10:1 fatty acid (1)

Partially characterized mol-
ecules

… 2.66 (1.13 to 4.19) 0.030 2.58 (1.07 to 4.08) 0.059

Sphingomyelin (d18:2/16:0, d18:1/16:1)† Sphingomyelins … 8.35 (3.52 to 13.17) 0.031 6.84 (1.99 to 11.69) 0.122

Picolinoylglycine Fatty acid metabolism (acyl 
glycine)

… 3.34 (1.41 to 5.28) 0.031 2.75 (0.81 to 4.69) 0.122

N6-carbamoylthreonyladenosine Purine metabolism, adenine 
containing

… 6.16 (2.54 to 9.78) 0.032 5.57 (1.99 to 9.16) 0.088

Dihomolinolenate (20:3n3 or 3n6)† Long-chain polyunsaturated 
fatty acid (n3 and n6)

0.73 4.25 (1.75 to 6.74) 0.032 3.65 (1.16 to 6.14) 0.113

1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) PC … 6.08 (2.52 to 9.64) 0.032 5.01 (1.44 to 8.58) 0.122

Acetylcarnitine (C2) Fatty acid metabolism (acyl 
carnitine, short chain)

0.50 6.57 (2.63 to 10.5) 0.038 7 (3.13 to 10.86) 0.046

Retinol (vitamin A) Vitamin A metabolism … 5.16 (2.04 to 8.28) 0.040 4.48 (1.39 to 7.58) 0.118

Argininate Urea cycle; arginine and pro-
line metabolism

… 3.93 (1.56 to 6.3) 0.040 3.19 (0.81 to 5.57) 0.148

2,3-dihydroxy-5-methylthio-4-pentenoate Methionine, cysteine, SAM, 
and taurine metabolism

… 7.88 (3.11 to 12.66) 0.040 6.51 (1.73 to 11.29) 0.135

Laurylcarnitine (C12)† Fatty acid metabolism (acyl 
carnitine, medium chain)

0.49 2.25 (0.88 to 3.62) 0.042 2.36 (1.02 to 3.71) 0.059

Metabolites with 25%–50% BDL: reference=BDL

Linoleoyl-linoleoyl-glycerol (18:2/18:2) [1] Diacylglycerol Below median … 2.29 (–1.6 to 6.17) 0.022 3.5 (–0.37 to 7.37) 0.046

Above median –4.56 (–8.39 to –0.73) –3.45 (–7.26 to 0.36)

(Continued )



integrated microbiota and metabolite analysis to examine 
the intercorrelation between microbiota and metabolites 
and whether the microbiota and metabolite data had 
better BP predictive performance than host sociode-
mographic and behavioral risk factors. We observed 
no correlation between the BP-associated, fourth gut 
microbiota PCoA axis with any of the 54 BP-associated 
metabolites (Table S17, FDR-adjusted P≥0.27). Using 
random forest regression, we found comparable accura-
cies across host factors, microbiota, and metabolite data 
in predicting SBP and DBP (Figure S3, P>0.05).

DISCUSSION
In a population-based cohort of middle-aged Chinese 
adults, we found an association between the overall gut 
microbiota (between-person diversity) with SBP and 
DBP, after accounting for a wide range of sociodemo-
graphic factors, health behaviors, and kidney function. 
Using plasma metabolome data, we found that a lipid 
pattern and several individual metabolites like sphingo-
myelins, acyl-carnitines, and cholesterol were positively 
associated with SBP and DBP. Our results suggest that in 
this population with high prevalence of untreated hyper-
tension (27.6%), gut microbiota, and plasma metabolites 
may play important roles in hypertension.

Several studies have shown an association between 
the gut microbiota and BP.13,14,18 For example, a recent 
case-control study of 80 Brazilian adults14 showed lower 
microbial biodiversity along with lower proportions of 
butyrate-producing taxa like Roseburia, Coprococcus, and 
Lachnospiraceae but higher proportions of Enterobacte-
riaceae and Lactobacillus in individuals with high versus 
normal BP. The Sun et al’s18 article of 529 middle-aged 
US adults from CARDIA study (Coronary Artery Risk 
Development in Young Adults) found an inverse cross-
sectional association between within-person microbial 
diversity with SBP and differences in the overall micro-
bial community by SBP. Similarly, we observed differ-
ences in the overall gut microbial community by SBP and 

DBP in the current CHNS study. The US CARDIA cohort 
is quite different from the China population-based cohort 
(eg, higher hypertension medication use, different diet 
and lifestyle in the US cohort). Furthermore, we excluded 
participants who used antihypertension medication from 
the current analysis, whereas 29.2% of participants took 
antihypertension medications in the CARDIA analysis 
sample.18 Future prospective studies are needed to con-
firm the results of our study and previous research.

Metabolomics studies showing associations between 
microbial metabolites and BP further support the role 
of gut microbiota in BP regulation.16,45 The INTERMAP 
study (International Population Study on Macronutri-
ents and Blood Pressure) of 4630 middle-aged adults 
from United States, United Kingdom, Japan, and China 
showed that urinary alanine and hippurate were posi-
tively and negatively associated with BP, respectively.45 
The ARIC study (Atherosclerosis Risk in Communities) of 
896 Blacks revealed that each one SD increase in base-
line serum 4-hydroxyhippurate was associated with 17% 
higher risk of incident hypertension.16 In our sample, we 
found that p-cresol sulfate from benzoate metabolism, 
a product of tyrosine and phenylalanine metabolism by 
anaerobic bacteria,46 was inversely associated with DBP. 
Additionally, we found comparable predictive accuracies 
between gut microbiota and plasma metabolome for BP, 
indicating that microbiota may play a role in metabolites-
BP associations, as it has been shown that gut micro-
biota is involved in host lipid metabolism and modulates 
plasma metabolome in response to angiotensin II.47,48 
Given that many microbiota-mediated metabolites were 
strongly associated with diet, for example, hippurate 
derived from dietary polyphenols,49 different dietary pat-
terns across populations may relate to these different 
results across studies.

Host-derived metabolites like the ketone body β-
hydroxybutyrate, acyl-carnitines, and long-chain fatty 
acids have also been suggested in mechanisms of BP 
regulation.15,16,50 For example, nutritional supplemen-
tation of a precursor of β-hydroxybutyrate attenuated 

Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] Diacylglycerol Below median … –3.07 (–6.99 to 0.85) 0.042 –2.49 (–6.36 to 1.38) 0.088

Above median –7.31 (–11.39 to –3.24) –6.8 (–10.82 to –2.78)

Metabolites with >50% BDL: reference=BDL

 Phenylalanylalanine Dipeptide Above limit of 
detection

… –4.86 (–7.86 to –1.85) 0.047 –4.94 (–7.89 to –1.98) 0.064

Coefficient indicates SBP associated with a fold increase of the abundance or per category change of a metabolite in linear regression (N=434). The statistical 
significance of metabolites with 25-50% BDL was assessed using a Wald test. Model 1 was adjusted for age, sex, provinces, batch, urbanization index, per-capita 
household income, education, total energy intake, animal-source food, sodium, physical activity, smoking, alcohol, and estimated glomerular filtration rate. Model 2 was 
additionally adjusted for body mass index. BDL indicates below detection limit; GPC, glycerophosphocholine; GPI, glycerophosphoinositol; PC, phosphatidylcholine; PI, 
phosphatidylinositol; and SBP, systolic blood pressure.

*Pattern was derived from principal component analysis followed by a varimax rotation. Loadings>0.4 are listed.
†Metabolites also associated with diastolic blood pressure.
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Table 3. Association Between Individual Metabolites and DBP (mm Hg)

Metabolites Pathway

Loading 
in lipid 
pattern*

Model 1 Model 2

Coefficient (95% CI) Q value Coefficient (95% CI) Q value

Lignoceroyl sphingomyelin 
(d18:1/24:0)†

Sphingomyelins … 4.85 (3.19 to 6.52) 2×10–05 4.28 (2.62 to 5.93) 0.001

Behenoyl sphingomyelin (d18:1/22:0)† Sphingomyelins … 6.16 (3.9 to 8.43) 1×10–04 5.09 (2.8 to 7.39) 0.004

Tricosanoyl sphingomyelin 
(d18:1/23:0)†

Sphingomyelins … 4.95 (3.11 to 6.8) 1×10–04 4.12 (2.26 to 5.98) 0.004

Cerotoylcarnitine (C26) † Fatty acid metabolism (acyl car-
nitine, long-chain saturated)

0.42 3.09 (1.71 to 4.46) 0.003 2.79 (1.45 to 4.14) 0.008

Corticosterone Corticosteroids … –1.39 (–2.02 to –0.77) 0.003 –1.11 (–1.74 to –0.49) 0.033

Dihomolinolenate (20:3n3 or 3n6)† Long-chain polyunsaturated 
fatty acid (n3 and n6)

0.73 3.28 (1.77 to 4.79) 0.004 2.83 (1.34 to 4.31) 0.020

Sphingomyelin (d18:2/24:2)† Sphingomyelins … 2.8 (1.51 to 4.09) 0.004 2.75 (1.5 to 4) 0.004

Myristoylcarnitine (C14)† Fatty acid metabolism (acyl car-
nitine, long-chain saturated)

0.53 2.15 (1.13 to 3.17) 0.005 2.19 (1.2 to 3.18) 0.004

Cortolone glucuronide (1) Corticosteroids … 2.34 (1.22 to 3.45) 0.005 1.7 (0.56 to 2.83) 0.112

Behenoyl dihydrosphingomyelin 
(d18:0/22:0)

Dihydrosphingomyelins … 1.84 (0.95 to 2.72) 0.006 1.2 (0.27 to 2.14) 0.182

Sphingomyelin (d18:1/21:0, 
d17:1/22:0, d16:1/23:0)†

Sphingomyelins … 3.85 (1.96 to 5.74) 0.007 2.73 (0.79 to 4.67) 0.133

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2)† PI … 3.46 (1.75 to 5.18) 0.007 3.11 (1.43 to 4.79) 0.024

Cis-4-decenoylcarnitine (C10:1) Fatty acid metabolism (acyl car-
nitine, monounsaturated)

0.44 1.47 (0.73 to 2.21) 0.008 1.52 (0.81 to 2.24) 0.006

Laurylcarnitine (C12)† Fatty acid metabolism (acyl 
carnitine, medium chain)

0.49 1.63 (0.8 to 2.46) 0.009 1.72 (0.91 to 2.52) 0.006

Linoleate (18:2n6) Long-chain polyunsaturated 
fatty acid (n3 and n6)

0.80 2.65 (1.26 to 4.04) 0.013 2.44 (1.08 to 3.81) 0.030

Decanoylcarnitine (C10) Fatty acid metabolism (acyl 
carnitine, medium chain)

0.48 1.43 (0.67 to 2.19) 0.014 1.46 (0.72 to 2.2) 0.013

1-palmitoleoylglycerol (16:1)† Monoacylglycerol 0.57 1.45 (0.68 to 2.23) 0.014 1.05 (0.27 to 1.84) 0.157

Palmitate (16:0) Long-chain saturated fatty acid 0.80 3.51 (1.62 to 5.41) 0.014 3.11 (1.26 to 4.97) 0.054

Cis-4-decenoate Medium-chain fatty acid … 2.06 (0.95 to 3.17) 0.014 2.03 (0.95 to 3.11) 0.021

1-myristoyl-2-arachidonoyl-GPC 
(14:0/20:4)†

PC … 2.29 (1.05 to 3.53) 0.014 1.59 (0.33 to 2.85) 0.188

5-dodecenoylcarnitine (C12:1) Fatty acid metabolism (acyl car-
nitine, monounsaturated)

0.50 1.43 (0.66 to 2.2) 0.014 1.53 (0.78 to 2.29) 0.009

1-dihomo-linoleoylglycerol (20:2) Monoacylglycerol 0.64 1.39 (0.62 to 2.15) 0.018 1.06 (0.3 to 1.83) 0.141

Octanoylcarnitine (C8) Fatty acid metabolism (acyl 
carnitine, medium chain)

0.51 1.74 (0.78 to 2.71) 0.018 1.83 (0.9 to 2.77) 0.014

1-linoleoylglycerol (18:2) Monoacylglycerol 0.63 1.54 (0.68 to 2.39) 0.018 1.14 (0.28 to 2) 0.161

1-dihomo-linolenylglycerol (20:3) Monoacylglycerol 0.66 1.49 (0.65 to 2.33) 0.020 1.02 (0.17 to 1.87) 0.225

Palmitoylcarnitine (C16)† Fatty acid metabolism (acyl car-
nitine, long-chain saturated)

0.50 3.57 (1.55 to 5.59) 0.021 3.33 (1.36 to 5.3) 0.051

Tetrahydrocortisone glucuronide (5) Corticosteroids … 1.65 (0.7 to 2.6) 0.024 1.22 (0.27 to 2.17) 0.182

1-palmitoyl-2-arachidonoyl-GPI 
(16:0/20:4)†

PI … 2.6 (1.11 to 4.1) 0.024 2.19 (0.72 to 3.67) 0.112

Sphingomyelin (d18:2/16:0, 
d18:1/16:1)†

Sphingomyelins … 5.09 (2.15 to 8.03) 0.024 3.9 (0.97 to 6.82) 0.161

Hexanoylcarnitine (C6) Fatty acid metabolism (acyl 
carnitine, medium chain)

0.55 1.79 (0.75 to 2.83) 0.025 1.83 (0.82 to 2.84) 0.027

Sphingomyelin (d18:2/14:0, 
d18:1/14:1)†

Sphingomyelins … 3.31 (1.38 to 5.24) 0.025 2.36 (0.42 to 4.3) 0.217

1-arachidonoyl-GPI (20:4) Lysophospholipid 0.55 3.53 (1.46 to 5.6) 0.026 2.99 (0.95 to 5.02) 0.118

(Continued )



hypertension in hypertensive rats fed a high-salt diet.50 
In line with our findings, Menni et al. showed that in 
3980 TwinsUK females, a few plasma carnitines, long-
chain fatty acids, and steroids were positively associated 
with BP, including hexadecanedioate, palmitate (16:0), 
octanoylcarnitine (C8), 10-heptadecenoate (17:1n7), 
and dihomolinoleate (20:2n6).15 In particular, hexa-
decanedioate, a dicarboxylic acid, consistently showed 
positive association with BP in 2 replication cohorts with 
both males and females.15 Subsequent analysis using rat 
model demonstrated that oral intake of hexadecanedio-
ate increased BP, supporting a causal role of hexadec-
anedioate in BP regulation.15 In another study of 202 
African and White men, serum long-chain and medium-
chain acyl-carnitines (in Whites only) were positively 
associated with ambulatory BP.51 Similarly, we found 

positive associations between medium- and long-chain 
acyl-carnitines, long-chain fatty acids, and a lipid pattern 
driven by long-chain fatty acids with BP. Elevated levels 
of circulating acyl-carnitines and long-chain fatty acids 
may contribute to hypertension development, as acyl-
carnitines are byproducts of incomplete β-oxidation and 
can accumulate in blood or urine when fatty acids are 
in excess for oxidation, thus stimulating proinflammatory 
pathways involving nuclear factor kappa B.52 Likewise, 
omega-6 fatty acid like linoleate may impair cardiovas-
cular health as it can be metabolized to dihomolinoleate 
and then to arachidonic acid, a precursor for proinflam-
matory eicosanoids like leukotriene B4.53

In addition, we found that several sphingomyelins and 
the sphingomyelin metabolic pathway were each posi-
tively associated with BP. Ceramide as a precursor for 

Table 4. Metabolic Pathways Associated With SBP or DBP

Metabolic pathways

SBP DBP

m* k*
Enrichment 
score* P value† Q value† k*

Enrichment 
score* P value† Q value†

Corticosteroids 6 0 … … … 3 12.47 0.001 0.005

Diacylglycerol 3 2 18.77 0.004 0.019 0 … … …

Fatty acid metabolism (acyl carnitine, long-
chain saturated)

6 3 14.48 9×10–4 0.009 3 12.47 0.001 0.005

Fatty acid metabolism (acyl carnitine, 
medium chain)

6 1 4.54 0.206 0.301 4 17.10 4×10–5 3×10–4

Monoacylglycerol 14 1 1.93 0.418 0.496 5 9.35 0.0002 0.001

PC 18 4 6.56 0.004 0.019 2 2.66 0.180 0.337

PI 5 2 11.24 0.013 0.049 2 9.72 0.017 0.048

Sphingomyelins 28 8 9.63 3×10–6 6×10–5 8 8.07 1×10–5 2×10–4

BP indicates blood pressure; DBP, diastolic BP; PC, phosphatidylcholine; PI, phosphatidylinositol; and SBP, systolic BP.
*Enrichment score was calculated using (k/m)/[(n-k)/(N-m)], where k and n are numbers of BP-associated metabolites (model 1 false discovery rate adjusted

P<0.05) in a given pathway and all identified pathways (SBP: n=34; DBP: n=39), respectively; m and N are numbers of classified metabolites in a given pathway and 
all identified pathways (N=904), respectively.

†P value for each pathway was calculated using Fisher exact test and adjusted for false discovery rate (Q value) across pathways containing at least one BP-
associated metabolite.

Sphingomyelin (d18:1/14:0, 
d16:1/16:0)†

Sphingomyelins … 3.95 (1.63 to 6.27) 0.026 2.65 (0.29 to 5.01) 0.279

Cholesterol† Sterol … 4.78 (1.98 to 7.59) 0.026 4.15 (1.4 to 6.9) 0.112

2-palmitoleoylglycerol (16:1) Monoacylglycerol 0.46 1.14 (0.46 to 1.82) 0.031 0.81 (0.13 to 1.5) 0.237

Hydantoin-5-propionate Histidine metabolism … 1.45 (0.58 to 2.32) 0.032 1.32 (0.47 to 2.17) 0.094

1-palmitoyl-2-arachidonoyl-GPC 
(16:0/20:4n6)†

PC … 3.94 (1.55 to 6.33) 0.035 2.94 (0.55 to 5.32) 0.206

p-cresol sulfate Benzoate metabolism … –1.01 (–1.63 to –0.4) 0.036 –0.88 (–1.48 to –0.27) 0.118

Palmitoleate (16:1n7) Long-chain monounsaturated 
fatty acid

0.70 1.8 (0.69 to 2.91) 0.040 1.71 (0.63 to 2.79) 0.077

Coefficient indicates DBP (mm Hg) associated with a fold increase of the abundance of a given metabolite in linear regression (N=434). Model 1 was adjusted for 
age, sex, provinces, batch, urbanization index, per-capita household income, education, total energy intake, animal-source food, sodium, physical activity, smoking, alcohol, 
and estimated glomerular filtration rate. Model 2 was additionally adjusted for body mass index. DBP indicates diastolic blood pressure; GPC, glycerophosphocholine; 
PC, phosphatidylcholine; and PI, phosphatidylinositol.

*Pattern was derived from principal component analysis followed by a varix rotation. Loadings > 0.4 are listed.
†Metabolites also associated with systolic blood pressure.

Table 3. Continued

Metabolites Pathway

Loading 
in lipid 
pattern*

Model 1 Model 2

Coefficient (95% CI) Q value Coefficient (95% CI) Q value



sphingolipids is harmful to cardiovascular health, includ-
ing impaired vasodilation.54 Excess sphingolipids occur 
when fatty acids exceed energy need or storage capac-
ity of a cell.55 Several lipidomic studies have identified 
sphingolipids as candidate blood markers for cardiovas-
cular diseases in humans.56–58 For example, Poss et al58 
found that 30 serum sphingolipids were elevated in sub-
jects with coronary artery disease (n=462) than controls 
(n=212) and a sphingolipid risk score was more effec-
tive than conventional biomarkers like triglycerides and 
LDL-C in distinguishing coronary artery disease patients.

The strengths of our study include paired microbiota 
and metabolite data in a well-characterized cohort with 
clinically measured BP. Moreover, the rich sociodemo-
graphic and behavioral data of the CHNS allowed us to 
account for a wide range of potential confounders. The 
low treatment rate for hypertension ensured sufficient 
sample size and large variation in BP, even after exclud-
ing people who took antihypertension medication to 
minimize medication effects. However, we cannot infer a 
causal relationship between gut microbiota, host metab-
olome, and BP due to the cross-sectional design, and our 
microbial 16S rRNA data did not provide functional infor-
mation. Future studies are needed to confirm our find-
ings, particularly, population-based studies with repeated 
measures paired with experimental studies to investigate 
the causal biological pathways modulating BP.

PERSPECTIVES
Our study provides substantial observational evidence 
for the associations between gut microbiota and plasma 
metabolites with BP in a population-based cohort of 
middle-aged Chinese adults. The overall microbial com-
munity varied by BP. Several individual metabolites (eg, 
lignoceroyl sphingomyelin, cerotoylcarnitine, and diho-
molinolenate) and an overall lipid metabolite pattern 
characterized by long-chain fatty acids were positively 
associated with BP, suggesting a role of circulating lip-
ids in hypertension. Further analyses with longitudinal 
data and refined microbial composition data in larger 
samples are needed to fully elucidate the causal rela-
tionship between gut microbiota, host metabolites, and 
BP, thereby informing effective early interventions and 
treatments for hypertension.
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