17 research outputs found

    The mirror antisaccade task: direction-amplitude interaction and spatial accuracy characteristics

    No full text
    In this study we examined the performance of human subjects in three oculomotor tasks: a visually guided saccade task (VST), a simple antisaccade task (SAT) and a mirror antisaccade task (MAT). The stimulus presentation was identical for all three tasks, and the differentiation of the tasks was based on the instruction given to the subjects. Subjects were instructed to either look at a visually presented target location (visually triggered saccade task), or to look at the opposite direction of the visually presented target (simple antisaccade task) or finally to look at the mirror location opposite to the location of the visually presented target (mirror antisaccade task). The loading of the simple antisaccade task with the addition of the amplitude requirement did not affect the percentage of directional errors but slowed down the onset of antisaccade execution by 19 ms. The amplitude of the directionally correct antisaccade in the mirror antisaccade task showed a significant distortion of the true mirror target location. This dysmetria followed the same qualitative pattern to that observed for the visually guided saccades, i.e., a near-target hypermetria together with a far-target hypometria, but both these features were exaggerated in the mirror antisaccade task. This distorted amplitude modulation of mirror antisaccade amplitude was completely lost in corrected antisaccades that followed a directional error. © Springer-Verlag 2006

    Independent component analysis for source localization of EEG sleep spindle components

    No full text
    Sleep spindles are bursts of sleep electroencephalogram (EEG) quasirhythmic activity within the frequency band of 11-16Hz, characterized by progressively increasing, then gradually decreasing amplitude. The purpose of the present study was to process sleep spindles with Independent Component Analysis (ICA) in order to investigate the possibility of extracting, through visual analysis of the spindle EEG and visual selection of Independent Components (ICs), spindle components (SCs) corresponding to separate EEG activity patterns during a spindle, and to investigate the intracranial current sources underlying these SCs. Current source analysis using Low-Resolution Brain Electromagnetic Tomography (LORETA) was applied to the original and the ICA-reconstructed EEGs. Results indicated that SCs can be extracted by reconstructing the EEG through back-projection of separate groups of ICs, based on a temporal and spectral analysis of ICs. The intracranial current sources related to the SCs were found to be spatially stable during the time evolution of the sleep spindles. © 2010 Erricos M. Ventouras et al

    Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection

    No full text
    Fractal dimension (FD) is a natural measure of the irregularity of a curve. In this study the performances of three waveform FD estimation algorithms (i.e. Katz's, Higuchi's and the k-nearest neighbour (k-NN) algorithm) were compared in terms of their ability to detect the onset of epileptic seizures in scalp electroencephalogram (EEG). The selection of parameters involved in FD estimation, evaluation of the accuracy of the different algorithms and assessment of their robustness in the presence of noise were performed based on synthetic signals of known FD. When applied to scalp EEG data, Katz's and Higuchi's algorithms were found to be incapable of producing consistent changes of a single type (either a drop or an increase) during seizures. On the other hand, the k-NN algorithm produced a drop, starting close to the seizure onset, in most seizures of all patients. The k-NN algorithm outperformed both Katz's and Higuchi's algorithms in terms of robustness in the presence of noise and seizure onset detection ability. The seizure detection methodology, based on the k-NN algorithm, yielded in the training data set a sensitivity of 100% with 10.10 s mean detection delay and a false positive rate of 0.27 h-1, while the corresponding values in the testing data set were 100%, 8.82 s and 0.42 h-1, respectively. The above detection results compare favourably to those of other seizure onset detection methodologies applied to scalp EEG in the literature. The methodology described, based on the k-NN algorithm, appears to be promising for the detection of the onset of epileptic seizures based on scalp EEG. © 2010 IOP Publishing Ltd

    EEG-based investigation of brain connectivity changes in psychotic patients undergoing the primitive expression form of dance therapy: a methodological pilot study

    No full text
    Primitive expression (PE) is a form of dance therapy (DT) that involves an interaction of ethologically and socially based forms which are supplied for re-enactment. There exist very few studies of DT applications including in their protocol the measurement of neurophysiological parameters. The present pilot study investigates the use of the correlation coefficient (ρ) and mutual information (MI), and of novel measures extracted from ρ and MI, on electroencephalographic (EEG) data recorded in patients with schizophrenia while they undergo PE DT, in order to expand the set of neurophysiology-based approaches for quantifying possible DT effects, using parameters that might provide insights about any potential brain connectivity changes in these patients during the PE DT process. Indication is provided for an acute potentiation effect, apparent at late-stage PE DT, on the inter-hemispheric connectivity in frontal areas, as well as for attenuation of the inter-hemispheric connectivity of left frontal and right central areas and for potentiation of the intra-hemispheric connectivity of frontal and central areas, bilaterally, in the transition from early to late-stage PE DT. This pilot study indicates that by using EEG connectivity measures based on ρ and MI, the set of useful neurophysiology-based approaches for quantifying possible DT effects is expanded. In the framework of the present study, the causes of the observed connectivity changes cannot be attributed with certainty to PE DT, but indications are provided that these measures may contribute to a detailed assessment of neurophysiological mechanisms possibly being affected by this therapeutic process. © 2014, Springer Science+Business Media Dordrecht

    An application of the Primitive Expression form of dance therapy in a psychiatric population

    No full text
    Primitive Expression (PE) is a form of dance therapy providing physical and neuropsychological benefits. It involves ethologically and socially based forms which are supplied for re-enactment, as well as an incentive for successful performance and a challenge to "transcend" In PE, play, rhythm, dance and song work on a symbolic level. The aim is to alert the participants to act and express themselves, while orienting their drives in a positive way. In this paper we present preliminary results of a PE-based protocol with a small group of psychiatric patients (psychotic and depressive disorders). It is shown that a relatively short duration of PE treatment led to observable changes in psychological state, behavior, and brain physiology. It was found that the patients (1) experienced an increase in their happiness level, (2) expressed a positive attitude to the PE process by utilizing appropriate word associations, and (3) exhibited (a patient subset) an increase in EEG activity related to a relaxed awake state. This study presents encouraging results related to the application of PE therapy with psychiatric patients. PE can be added to other dance therapy methodologies which have been shown to be promising therapeutic approaches in psychiatric populations. © 2012 Elsevier Inc

    G-autonomy of EEG recordings of psychotic patients undergoing the primitive expression form of dance therapy

    No full text
    Primitive expression (PE) is a form of dance therapy (DT) that involves an interaction of ethologically and socially based forms which are supplied for re-enactment. Brain connectivity has been measured in electroencephalographic (EEG) data of patients with schizophrenia undergoing PE DT, using the correlation coefficient and mutual information. These parameters do not measure the existence or absence of directionality in the connectivity. The present study investigates the use of the G-autonomy measure of EEG electrode voltages of the same group of schizophrenic patients. G-autonomy is a measure of the “autonomy” of a system. It indicates the degree by which prediction of the system’s future evolution is enhanced by taking into account its own past states, in comparison to predictions based on past states of a set of external variables. In the present research, “own” past states refer to voltage values in the time series recorded at a specific electrode and “external” variables refer to the voltage values recorded at other electrodes. Indication is provided for an acute effect of early-stage PE DT expressed by the augmentation of G-autonomy in the delta rhythm and an acute effect of late-stage PE DT expressed by the reduction of G-autonomy in the theta and alpha rhythms
    corecore