27 research outputs found

    Key influences on office comfort and energy performance in different climates

    Full text link
    This paper investigates the magnitude of influence of climate, architectural design and occupants on thermal comfort and final energy consumption in offices in different climates. A parametric study for a typical cellular office room has been conducted using the simulation software EnergyPlus. Two different occupant scenarios are each compared with three different architectural design variations and modelled in the context of three different locations for the IPCC climate change scenario A2 for 2030. The parameters evaluated in this study are final energy consumption and adaptive thermal comfort according to ASHRAE Standard 55. The study shows that the impact of occupants on final energy performance is larger than the impact of architectural design in all investigated climates, but the impact of architectural design is predominant concerning thermal comfort. Warmer climates show larger optimisation potential for comfort and energy performance in offices compared to colder climates

    Occupant interaction with interior environment in Greek dwellings during summer

    Full text link
    User behaviour significantly affects energy consumption simulation estimates, which can consequently influence architectural design decisions at an early stage. Different regional behavioural patterns could, therefore, hinder the applicability of certain architectural and environmental strategies. Through questionnaires analysis and field studies, this study investigates the pattern use of manual control of windows, shading and air condition units, in residential buildings in Greece, during summer. Initial findings of the analysis indicate significant interaction of Greek residents with the building shell, in their effort to maintain comfort

    Climate change sensitivity of comfort and energy performance criteria for offices

    Full text link
    The climate change scenarios of the Intergovernmental Panel on Climate Change (IPCC) predict a significant increase in temperatures over the next decades. Architecture and building occupants have to respond to this change, but little information is currently available in how far the predicted changes are likely to affect comfort and energy performance in buildings. This study therefore investigates the climate change sensitivity of the following parameters: adaptive thermal comfort according to Ashrae Standard 55 and EN 15251, energy consumption, heating and cooling loads, and length of heating and cooling periods. The study is based on parametric simulations of typical office room configurations in the context of Athens, Greece. They refer to different building design priorities and account for different occupant behaviour by using an ideal and worst case scenario. To evaluate the impact of the climate change, simulations are compared based on a common standard weather data set for Athens, and a generated climate change data set for the IPCC A2 scenario. The results show a significant impact of the climate change on all investigated parameters. They also indicate that in this context the optimisation of comfort and energy performance is likely to be related to finding the best possible balance between building (design) and occupant behaviour and other contextual influences, rather than a straightforward optimisation of separated single parameters

    Balancing buildings and occupants - a holistic approach to thermal comfort and greenhouse gas emissions in mixed mode offices

    Full text link
    This paper describes a holistic approach to comfort and greenhouse gas emissions in mixed mode offices. It is based on parametric studies for a typical cellular office in the Mediterranean climate of Athens, Greece, using building simulation.Considered parameters are the influence of different building design, varying occupant behaviour and internal heat loads, as well as of an exceptionally hot summer. Additionally, the performance of a cooling strategy following the comfort limits according to the EN 15251 adaptive model is compared with the common fixed cooling set point 22&deg;C.The performance of mixed mode offices is evaluated regarding thermal comfort, daylight autonomy and related greenhouse gas emissions. Results indicate strategies to improve sustainability in mixed mode offices in Athens, by balancing the influencing parameters.<br /

    Influence of building use on comfort and energy performance in offices

    Full text link
    This paper investigates the influence of different building use by companies and individual occupants on thermal and visual comfort, energy consumption and CO2 emissions in mixed mode offices. Adaptive thermal comfort evaluation according to EN 15251 has been used during natural ventilation and cooling

    Context dependency of comfort and energy performance in mixed mode offices

    Full text link
    This article investigates the context dependency of comfort and energy performance in mixed-mode offices in the climate of Athens, Greece. It is based on a parametric study using the simulation software EnergyPlus. Context refers to different building design priorities on the real estate market (prestige, low cost and green), occupant behaviour scenarios (ideal and worst case) and cooling strategies (fixed and adaptive set points). Results are evaluated according to energy consumption and related greenhouse gas emissions, daylight autonomy, view and percentage of working time when heating and cooling are operating. The results indicate that a holistic approach to comfort and energy performance evaluation focused on the specific context of a building and its occupants is necessary to develop appropriate optimization strategies. In early design stages, such specific information is not yet available and ideal/worst-case scenarios can indicate the magnitude of influence of occupants compared to building design.<br /

    Comparison of the EN 15251 and Ashrae Standard 55 adaptive thermal comfort models in the context of a Mediterranean climate

    Full text link
    Strong heat waves in the past decade and resulting legal cases which gave full responsibility for indoor thermal comfort to building professionals lead to an increased uncertainty how to maintain thermal comfort in offices without the use of a cooling system. Adaptive thermal comfort standards such as EN 15251 and Ashrae Standard 55 provide methodologies to evaluate comfort in naturally ventilated spaces. Based on a parametric study for a typical cellular office in the context of Athens, Greece, and using the building simulation software EnergyPlus, this study investigates the potentials for the applicability of natural ventilation in a Mediterranean climate. The Ashrae Standard 55 and EN 15251 adaptive thermal comfort models are compared in this context, and conclusions are drawn how the use of natural ventilation based on adaptive models can be further encourgaged

    Simulating the Impact of Daytime Calibration in the Behavior of a Closed Loop Proportional Lighting Control System

    No full text
    A daylighting control system that uses the closed loop proportional algorithm needs to be calibrated both during nighttime and daytime. The selection of the daytime calibration time can affect the behavior of the system and is usually performed when the ratio of the illuminance of the ceiling sensor (SD,tc) to the illuminance at a point on the working plane (ED,tc) is relatively large without sunlight patches in the ceiling photo-sensor’s field of view (FOV). However, this requirement is not associated with a specific value and can be achieved under a wide range of conditions related to the sky luminance distribution. In the present work, four ceiling sensors with different field of views (FOVs) were examined in a typical north-facing office space. The effect of daytime calibration on the system’s performance was estimated through the calculation of lighting energy savings and the overdimming percentage. The results show that the effect of both the FOV of the ceiling sensor and the daytime calibration period is small except for the case of the sensor without cover, especially when it is close to the opening. In an attempt to quantify the SDtc/IDtc ratio, a new magnitude (RR) is proposed by dividing the illuminance ratios of the ceiling photo-sensor by that on the working surface during daytime and nighttime calibration. Thus, the daily calibration of the sensors with cover can be performed when RR &gt; 1

    Impact of climate change on comfort and energy performance in offices

    Full text link
    This paper investigates the impact of a climate change scenario on comfort and energy performance in offices, in relation to the influence of building design and occupants. It focuses on a typical cellular office room in the context of Athens. Greece, as input for a parametric study using the building simulation software EnergyPlus. Three different building design variations are combined with two different occupant scenarios and a standard weather data set as well as the IPCC climate change scenario A2 for 2020, 2050 and 2080. Results are investigated from two different perspectives: For naturally ventilated buildings the evaluation is related to adaptive thermal comfort according to ASHRAE Standard 55 and EN 15251. And for mixed mode context the evaluation is focused on the resulting impact on final energy consumption, greenhouse gas emissions, peak heating and cooling loads and the percentage of working time when the building is free-running. The results indicate a significant impact of the climate change scenarios on adaptive thermal comfort, and they indicate differences in evaluation between ASHRAE Standard 55 and EN 15251. The comparison of climate change, building design and occupant scenarios indicates that building design is the key to thermal comfort optimisation, whereas the major mitigation potential regarding energy consumption and greenhouse gas emissions is related to occupant behaviour. (C) 2012 Elsevier Ltd. All rights reserved

    Impact of climate change on thermal comfort and energy performance in offices - a parametric study

    Full text link
    This paper investigates the impact of climate change on comfort and energy performance in offices in relation to the influence of building design and occupants. It focuses on a typical cellular office room in the context of Athens, Greece, as input for a parametric study using the building simulation software EnergyPlus. Three different building design variations are combined with two different occupant scenarios and 4 different weather data sets for IPCC climate change scenario A2.For naturally ventilated buildings adaptive thermal comfort is evaluated according to ASHRAE Standard 55 and EN 15251. For mixed mode context evaluation is focused on greenhouse gas emissions and peak heating / cooling loads. Results indicate significant impact of the climate change on thermal comfort, and deviations between both comfort models. Comparing climate change, building design and occupant scenarios indicates that building design is the predominant influence on thermal comfort, whereas occupants are the predominant influence on greenhouse gas emissions.<br /
    corecore