5 research outputs found

    Superradiant Cherenkov-Wakefield radiation as THz source for FEL facilities

    Full text link
    An electron beam passing through a tube which is lined on the inside with a dielectric layer will radiate energy in the THz range due to the interaction with the boundary. The resonant enhancement of certain frequencies is conditioned by structure parameters as tube radius and permittivity of the dielectric layer. In low loss structures narrow-band radiation is generated which can be coupled out by suitable antennas. For higher frequencies the coupling to the resistive outer metal layer becomes increasingly important. The losses in the outer layer prohibit to reach high frequencies with narrow-band conditions. Instead short broad-band pulses can be generated with still attractive power levels. In the first section of the paper a general theory of the impedance of a two-layer structure is presented and the coupling to the outer resistive layer is discussed. Approximate relations for the radiated energy, power and pulse length for a set of structure parameters are derived and compared to numerical results in the following section. Finally first numerical result of the out-coupling of the radiation by means of a Vlasov antenna and estimates of the achieved beam quality are presented.Comment: submitted for publicatio

    NATO Advanced Research Workshop on Brilliant Light Facilities and Research in Life and Material Sciences

    No full text
    The present book contains an excellent overview of the status and highlights of brilliant light facilities and their applications in biology, chemistry, medicine, materials and environmental sciences. Overview papers on diverse fields of research by leading experts are accompanied by the highlights in the near and long-term perspectives of brilliant X-Ray photon beam usage for fundamental and applied research. The book includes advanced topics in the fields of high brightness photon beams, instrumentation, the spectroscopy, microscopy, scattering and imaging experimental techniques and their applications. The book is strongly recommended for students, engineers and scientists in the field of accelerator physics, X-ray optics and instrumentation, life, materials and environmental sciences, bio and nanotechnology

    A Versatile THz Source for High-Repetition Rate XFELs

    No full text
    The development of high-repetition rate XFELs brings an exciting time for novel fundamental science exploration via pump-probe interactions. Laser-based pump sources can provide a wide range of wavelengths (200-10000~nm) via various gain media. These sources can also be extended with optical parametric amplifiers to cover a largely versatile spectral and bandwidth range. However beyond 10~μm, toward the THz regime, there exists no suitable gain media, and optical-to-THz efficiencies are limited below 1\%. In this paper we discuss the use of Cherenkov-based radiators with conventional electron bunches to generate high-power THz radiation over a wide range of parameters for existing and future XFEL facilities

    Towards an Advanced Linear International Collider

    No full text
    This document provides detailed information on the status of Advanced and Novel Accelerators techniques and describes the steps that need to be envisaged for their implementation in future accelerators, in particular for high energy physics applications. It complements the overview prepared for the update of the European Strategy for particle physics, and provides a detailed description of the field. The scientific priorities of the community are described for each technique of acceleration able to achieve accelerating gradient in the GeV~range or above. ALEGRO working group leaders have coordinated the preparation of their working group contribution and contributed to editing the documents. The preparation of this document was coordinated by the Advanced LinEar collider study GROup, ALEGRO. The content was defined through discussions at the ALEGRO workshop in Oxford UK, March 2018, and an advanced draft was discussed during a one day meeting prior to the AAC workshop in Breckenridge, CO, USA, August 2018. This document was submitted as an addendum to the ALEGRO submission to the European Strategy for Particle Physics
    corecore