315 research outputs found
Gene–Environment Interaction in Yeast Gene Expression
The effects of genetic variants on phenotypic traits often depend on environmental and physiological conditions, but such gene–environment interactions are poorly understood. Recently developed approaches that treat transcript abundances of thousands of genes as quantitative traits offer the opportunity to broadly characterize the architecture of gene–environment interactions. We examined the genetic and molecular basis of variation in gene expression between two yeast strains (BY and RM) grown in two different conditions (glucose and ethanol as carbon sources). We observed that most transcripts vary by strain and condition, with 2,996, 3,448, and 2,037 transcripts showing significant strain, condition, and strain–condition interaction effects, respectively. We expression profiled over 100 segregants derived from a cross between BY and RM in both growth conditions, and identified 1,555 linkages for 1,382 transcripts that show significant gene–environment interaction. At the locus level, local linkages, which usually correspond to polymorphisms in cis-regulatory elements, tend to be more stable across conditions, such that they are more likely to show the same effect or the same direction of effect across conditions. Distant linkages, which usually correspond to polymorphisms influencing trans-acting factors, are more condition-dependent, and often show effects in different directions in the two conditions. We characterized a locus that influences expression of many growth-related transcripts, and showed that the majority of the variation is explained by polymorphism in the gene IRA2. The RM allele of IRA2 appears to inhibit Ras/PKA signaling more strongly than the BY allele, and has undergone a change in selective pressure. Our results provide a broad overview of the genetic architecture of gene–environment interactions, as well as a detailed molecular example, and lead to key insights into how the effects of different classes of regulatory variants are modulated by the environment. These observations will guide the design of studies aimed at understanding the genetic basis of complex traits
Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster
Gene-expression profiling combined with selection for genetically divergent Drosophila lines either highly sensitive or resistant to ethanol exposure has been used to identify candidate genes that affect alcohol sensitivity, including 23 novel genes that have human orthologs
Genome-wide association study of sleep in Drosophila melanogaster
BACKGROUND: Sleep is a highly conserved behavior, yet its duration and pattern vary extensively among species and between individuals within species. The genetic basis of natural variation in sleep remains unknown. RESULTS: We used the Drosophila Genetic Reference Panel (DGRP) to perform a genome-wide association (GWA) study of sleep in D. melanogaster. We identified candidate single nucleotide polymorphisms (SNPs) associated with differences in the mean as well as the environmental sensitivity of sleep traits; these SNPs typically had sex-specific or sex-biased effects, and were generally located in non-coding regions. The majority of SNPs (80.3%) affecting sleep were at low frequency and had moderately large effects. Additive models incorporating multiple SNPs explained as much as 55% of the genetic variance for sleep in males and females. Many of these loci are known to interact physically and/or genetically, enabling us to place them in candidate genetic networks. We confirmed the role of seven novel loci on sleep using insertional mutagenesis and RNA interference. CONCLUSIONS: We identified many SNPs in novel loci that are potentially associated with natural variation in sleep, as well as SNPs within genes previously known to affect Drosophila sleep. Several of the candidate genes have human homologues that were identified in studies of human sleep, suggesting that genes affecting variation in sleep are conserved across species. Our discovery of genetic variants that influence environmental sensitivity to sleep may have a wider application to all GWA studies, because individuals with highly plastic genotypes will not have consistent phenotypes
Transcriptional response to alcohol exposure in Drosophila melanogaster
BACKGROUND: Alcoholism presents widespread social and human health problems. Alcohol sensitivity, the development of tolerance to alcohol and susceptibility to addiction vary in the population. Genetic factors that predispose to alcoholism remain largely unknown due to extensive genetic and environmental variation in human populations. Drosophila, however, allows studies on genetically identical individuals in controlled environments. Although addiction to alcohol has not been demonstrated in Drosophila, flies show responses to alcohol exposure that resemble human intoxication, including hyperactivity, loss of postural control, sedation, and exposure-dependent development of tolerance. RESULTS: We assessed whole-genome transcriptional responses following alcohol exposure and demonstrate immediate down-regulation of genes affecting olfaction, rapid upregulation of biotransformation enzymes and, concomitant with development of tolerance, altered transcription of transcriptional regulators, proteases and metabolic enzymes, including biotransformation enzymes and enzymes associated with fatty acid biosynthesis. Functional tests of P-element disrupted alleles corresponding to genes with altered transcription implicated 75% of these in the response to alcohol, two-thirds of which have human orthologues. CONCLUSION: Expression microarray analysis is an efficient method for identifying candidate genes affecting complex behavioral and physiological traits, including alcohol abuse. Drosophila provides a valuable genetic model for comparative genomic analysis, which can inform subsequent studies in human populations. Transcriptional analyses following alcohol exposure in Drosophila implicate biotransformation pathways, transcriptional regulators, proteolysis and enzymes that act as metabolic switches in the regulation of fatty acid metabolism as important targets for future studies of the physiological consequences of human alcohol abuse
Sustained Post-Mating Response in Drosophila melanogaster Requires Multiple Seminal Fluid Proteins
Successful reproduction is critical to pass genes to the next generation. Seminal proteins contribute to important reproductive processes that lead to fertilization in species ranging from insects to mammals. In Drosophila, the male's accessory gland is a source of seminal fluid proteins that affect the reproductive output of males and females by altering female post-mating behavior and physiology. Protein classes found in the seminal fluid of Drosophila are similar to those of other organisms, including mammals. By using RNA interference (RNAi) to knock down levels of individual accessory gland proteins (Acps), we investigated the role of 25 Acps in mediating three post-mating female responses: egg production, receptivity to remating and storage of sperm. We detected roles for five Acps in these post-mating responses. CG33943 is required for full stimulation of egg production on the first day after mating. Four other Acps (CG1652, CG1656, CG17575, and CG9997) appear to modulate the long-term response, which is the maintenance of post-mating behavior and physiological changes. The long-term post-mating response requires presence of sperm in storage and, until now, had been known to require only a single Acp. Here, we discovered several novel Acps together are required which together are required for sustained egg production, reduction in receptivity to remating of the mated female and for promotion of stored sperm release from the seminal receptacle. Our results also show that members of conserved protein classes found in seminal plasma from insects to mammals are essential for important reproductive processes
Quantitative genomics of starvation stress resistance in Drosophila
BACKGROUND: A major challenge of modern biology is to understand the networks of interacting genes regulating complex traits, and the subset of these genes that affect naturally occurring quantitative genetic variation. Previously, we used P-element mutagenesis and quantitative trait locus (QTL) mapping in Drosophila to identify candidate genes affecting resistance to starvation stress, and variation in resistance to starvation stress between the Oregon-R (Ore) and 2b strains. Here, we tested the efficacy of whole-genome transcriptional profiling for identifying genes affecting starvation stress resistance. RESULTS: We evaluated whole-genome transcript abundance for males and females of Ore, 2b, and four recombinant inbred lines derived from them, under control and starved conditions. There were significant differences in transcript abundance between the sexes for nearly 50% of the genome, while the transcriptional response to starvation stress involved approximately 25% of the genome. Nearly 50% of P-element insertions in 160 genes with altered transcript abundance during starvation stress had mutational effects on starvation tolerance. Approximately 5% of the genome exhibited genetic variation in transcript abundance, which was largely attributable to regulation by unlinked genes. Genes exhibiting variation in transcript abundance among lines did not cluster within starvation resistance QTLs, and none of the candidate genes affecting variation in starvation resistance between Ore and 2b exhibited significant differences in transcript abundance between lines. CONCLUSIONS: Expression profiling is a powerful method for identifying networks of pleiotropic genes regulating complex traits, but the relationship between variation in transcript abundance among lines used to map QTLs and genes affecting variation in quantitative traits is complicated
Mutations in many genes affect aggressive behavior in Drosophila melanogaster
Background Aggressive behavior in animals is important for survival and reproduction. Identifying the underlying genes and environmental contexts that affect aggressive behavior is important for understanding the evolutionary forces that maintain variation for aggressive behavior in natural populations, and to develop therapeutic interventions to modulate extreme levels of aggressive behavior in humans. While the role of neurotransmitters and a few other molecules in mediating and modulating levels of aggression is well established, it is likely that many additional genetic pathways remain undiscovered. Drosophila melanogaster has recently been established as an excellent model organism for studying the genetic basis of aggressive behavior. Here, we present the results of a screen of 170 Drosophila P-element insertional mutations for quantitative differences in aggressive behavior from their co-isogenic control line.
Results We identified 59 mutations in 57 genes that affect aggressive behavior, none of which had been previously implicated to affect aggression. Thirty-two of these mutants exhibited increased aggression, while 27 lines were less aggressive than the control. Many of the genes affect the development and function of the nervous system, and are thus plausibly relevant to the execution of complex behaviors. Others affect basic cellular and metabolic processes, or are mutations in computationally predicted genes for which aggressive behavior is the first biological annotation. Most of the mutations had pleiotropic effects on other complex traits. We characterized nine of these mutations in greater detail by assessing transcript levels throughout development, morphological changes in the mushroom bodies, and restoration of control levels of aggression in revertant alleles. All of the P-element insertions affected the tagged genes, and had pleiotropic effects on brain morphology.
Conclusion This study reveals that many more genes than previously suspected affect aggressive behavior, and that these genes have widespread pleiotropic effects. Given the conservation of aggressive behavior among different animal species, these are novel candidate genes for future study in other animals, including humans
- …