2 research outputs found
Sensitivity of the N<sub>TB</sub> phase formation to the molecular structure of imino-linked dimers
<p>Here we report on the synthesis and mesomorphic properties of a series of imino-linked dimeric molecules. In order to improve our understanding of the structure–N<sub>TB</sub> phase correlations, we have studied the impact of geometric and electronic factors arising from varying mesogenic units, different spacer lengths and from the ratio (<i>n/m</i>) between the lengths of terminal chains (<i>n</i>) and spacer (<i>m</i>). From the perspective of the molecular geometry, the results show that the stability of the N<sub>TB</sub> phase results from increasing effective molecular bending and with the broadening of the mesogenic unit, in particular near the spacer, and that the <i>n</i>/<i>m</i> ratio plays a substantial role in conjunction with the specific mesogenic unit. A computational study of the electronic properties shows that a broadening of the mesogenic core in the vicinity of the spacer is associated with an increased anisotropy of the electrostatic potential distribution. Within a given series of materials our study suggests that the incidence of the N<sub>TB</sub> phase and its thermal stability are governed by the synergy of specific geometrical factors and the anisotropy of the electrostatic potential distribution of the mesogenic core.</p
Geometric aspects influencing N-N<sub>TB</sub> transition - implication of intramolecular torsion
<p>Herein we report a comprehensive study on novel carbonyl- and ethenyl-linked symmetric dimers that combine synthesis, mesomorphic properties and molecular modelling. The study has been focused on the impact of geometry imposed by the linkage group on the incidence of the twist-bend nematic (N<sub>TB</sub>) phase. Comparison of the mesomorphic properties of these two series complemented with computational studies of conformational space around the linkage group points molecular curvature and intramolecular torsion plays important role in the appearance of the N<sub>TB</sub> phase and can be regarded as the basic structural requirements for design of new twist-bend nematogen materials.</p