942 research outputs found

    The adiponectin paradox for all-cause and cardiovascular mortality

    Get PDF
    Basic science studies have shown beneficial effects of adiponectin on glucose homeostasis, chronic low-grade inflammation, apoptosis, oxidative stress, and atherosclerotic processes, so this molecule usually has been considered a salutary adipokine. It was therefore quite unexpected that large prospective human studies suggested that adiponectin is simply a marker of glucose homeostasis,with no direct favorable effect on the risk of type 2 diabetes and cardiovascular disease. But even more unforeseen were data addressing the role of adiponectin on the risk of death. In fact, a positive, rather than the expected negative, relationship was reported between adiponectin and mortality rate across many clinical conditions, comprising diabetes. The biology underlying this paradox is unknown. Several explanations have been proposed, including adiponectin resistance and the confounding role of natriuretic peptides. In addition, preliminary genetic evidence speaks in favor of a direct role of adiponectin in increasing the risk of death. However, none of these hypotheses are based on robust data, so further efforts are needed to unravel the elusive role of adiponectin on cardiometabolic health and, most important, its paradoxical association with mortality rate

    Insulin receptor signaling and glucagon-like peptide 1 effects on pancreatic beta cells

    Get PDF
    Glucagon-like peptide-1 (GLP-1) is a potent gluco-incretin hormone, which plays a central role on pancreatic beta cell proliferation, survival and insulin secreting activity and whose analogs are used for treating hyperglycemia in type 2 diabetes mellitus. Notably, abnormal insulin signaling affects all the above-mentioned aspects on pancreatic beta cells. The aim of our study was to investigate whether the protective effects of GLP1-1 on beta cells are affected by altered insulin receptor signaling. To this end, several effects of GLP-1 were studied in INS-1E rat beta cells transfected either with an inhibitor of insulin receptor function (i.e., the Ectonucleotide Pyrophosphatase Phosphodiesterase 1, ENPP1), or with insulin receptor small interfering RNA, as well as in control cells. Crucial experiments were carried out also in a second cell line, namely the βTC-1 mouse beta cells. Our data indicate that in insulin secreting beta cells in which either ENPP1 was up-regulated or insulin receptor was down-regulated, GLP-1 positive effects on several pancreatic beta cell activities, including glucose-induced insulin secretion, cell proliferation and cell survival, were strongly reduced. Further studies are needed to understand whether such a scenario occurs also in humans and, if so, if it plays a role of clinical relevance in diabetic patients with poor responsiveness to GLP-1 related treatments

    GALNT2 mRNA levels are associated with serum triglycerides in humans

    Get PDF
    Atherogenic dyslipidemia, characterized by high triglycerides (TG) and low high density lipoprotein (HDL)-cholesterol levels, is a feature of patients with insulin resistance, obesity, and type 2 diabetes (T2D) [1] and plays a major role in shaping the risk of cardiovascular disease. Both TG and HDL-cholesterol serum concentrations are under the control of both environmental factors and up to 95 genetic loci, unraveled by a very large genome-wide association study (GWAs) in approximately 100,000 individuals [2]. Among these loci is GALNT2, which encode for ppGal-NAc-T2, involved in O-linked glycosylation. Similarly, studies in rodents have shown that liver GALNT2 expression modulates HDL-cholesterol concentrations [2]. Based on such studies, it is conceivable that GALNT2 expression changes play a role on TG and/or HDL-cholesterol levels. To gain further insights about this hypothesis, GALNT2 expression was measured in peripheral white blood cells (PWBC), from 224 individuals with a wide range of TG and HDL-cholesterol levels, as well as other metabolic parameters and clinical conditions

    Evidence of a causal relationship between high serum adiponectin levels and increased cardiovascular mortality rate in patients with type 2 diabetes

    Get PDF
    Background: Despite its beneficial role on insulin resistance and atherosclerosis, adiponectin has been repeatedly reported as an independent positive predictor of cardiovascular mortality. Methods: A Mendelian randomization approach was used, in order to evaluate whether such counterintuitive association recognizes a cause-effect relationship. To this purpose, single nucleotide polymorphism rs822354 in the ADIPOQ locus which has been previously associated with serum adiponectin at genome-wide level, was used as an instrument variable. Our investigation was carried out in the Gargano Heart Study-prospective design, comprising 356 patients with type 2 diabetes, in whom both total and high molecular weight (HMW) adiponectin were measured and cardiovascular mortality was recorded (mean follow-up = 5.4 ± 2.5 years; 58 events/1922 person-year). Results: The A allele of rs822354 was associated with both total and HMW adiponectin [β (SE) = 0.10 (0.042), p = 0.014 and 0.17 (0.06), p = 0.003; respectively]. In a Poisson model comprising age, sex, smoking habits, BMI, HbA1c, total cholesterol, HDL-cholesterol, triglycerides, insulin therapy and hypertension, both rs822354 (IRR = 1.94, 95 % CI 1.23-3.07; p = 0.005), as well as the genetic equivalent of total adiponectin change (IRR = 1.07, 95 % CI 1.02-1.12; p = 0.003) were significantly associated with cardiovascular mortality. The observed genetic effect was significantly greater than that exerted by the genetic equivalent change of serum adiponectin (p for IRR heterogeneity = 0.012). In the above-mentioned adjusted model, very similar results were obtained when HMW, rather than total, adiponectin was used as the exposure variable of interest. Conclusions: Our data suggest that the paradoxical association between high serum adiponectin levels and increased cardiovascular mortality rate is based on a cause-effect relationship, thus pointing to an unexpected deleterious role of adiponectin action/metabolism on atherosclerotic processes

    GALNT2 as a novel modulator of adipogenesis and adipocyte insulin signaling

    Get PDF
    Background/objectives: A better understanding of adipose tissue biology is crucial to tackle insulin resistance and eventually coronary heart disease and diabetes, leading causes of morbidity and mortality worldwide. GALNT2, a GalNAc-transferase, positively modulates insulin signaling in human liver cells by down-regulating ENPP1, an insulin signaling inhibitor. GALNT2 expression is increased in adipose tissue of obese as compared to that of non-obese individuals. Whether this association is secondary to a GALNT2-insulin sensitizing effect exerted also in adipocytes is unknown. We then investigated in mouse 3T3-L1 adipocytes the GALNT2 effect on adipogenesis, insulin signaling and expression levels of both Enpp1 and 72 adipogenesis-related genes. Methods: Stable over-expressing GALNT2 and GFP preadipocytes (T 0 ) were generated. Adipogenesis was induced with (R+) or without (R−) rosiglitazone and investigated after 15 days (T 15 ). Lipid accumulation (by Oil Red-O staining) and intracellular triglycerides (by fluorimetric assay) were measured. Lipid droplets (LD) measures were analyzed at confocal microscope. Gene expression was assessed by RT-PCR and insulin-induced insulin receptor (IR), IRS1, JNK and AKT phosphorylation by Western blot. Results: Lipid accumulation, triglycerides and LD measures progressively increased from T 0 to T 15 R- and furthermore to T 15 R+. Such increases were significantly higher in GALNT2 than in GFP cells so that, as compared to T 15 R+GFP, T 15 R- GALNT2 cells showed similar (intracellular lipid and triglycerides accumulation) or even higher (LD measures, p < 0.01) values. In GALNT2 preadipocytes, insulin-induced IR, IRS1 and AKT activation was higher than that in GFP cells. GALNT2 effect was totally abolished during adipocyte maturation and completely reversed at late stage maturation. Such GALNT2 effect trajectory was paralleled by coordinated changes in the expression of Enpp1 and adipocyte-maturation key genes. Conclusions: GALNT2 is a novel modulator of adipogenesis and related cellular phenotypes, thus becoming a potential target for tackling the obesity epidemics and its devastating sequelae

    Association of a homozygous GCK missense mutation with mild diabetes

    Get PDF
    Background: Homozygous inactivating GCK mutations have been repeatedly reported to cause severe hyperglycemia, presenting as permanent neonatal diabetes mellitus (PNDM). Conversely, only two cases of GCK homozygous mutations causing mild hyperglycemia have been so far described. We here report a novel GCK mutation (c.1116G>C, p.E372D), in a family with one homozygous member showing mild hyperglycemia. Methods: GCK mutational screening was carried out by Sanger sequencing. Computational analyses to investigate pathogenicity and molecular dynamics (MD) were performed for GCK-E372D and for previously described homozygous mutations associated with mild (n = 2) or severe (n = 1) hyperglycemia, used as references. Results: Of four mildly hyperglycemic family-members, three were heterozygous and one, diagnosed in the adulthood, was homozygous for GCK-E372D. Two nondiabetic family members carried no mutations. Fasting glucose (p = 0.016) and HbA1c (p = 0.035) correlated with the number of mutated alleles (0–2). In-silico predicted pathogenicity was not correlated with the four mutations’ severity. At MD, GCK-E372D conferred protein structure flexibility intermediate between mild and severe GCK mutations. Conclusions: We present the third case of homozygous GCK mutations associated with mild hyperglycemia, rather than PNDM. Our in-silico analyses support previous evidences suggesting that protein stability plays a role in determining clinical severity of GCK mutations
    corecore