258 research outputs found

    Interleukin-10 production by effector T cells: Th1 cells show self control

    Get PDF
    Interleukin (IL)-10 is a cytokine that modulates both innate and adaptive immunity, primarily by exerting antiinflammatory effects. IL-10 was originally thought to be produced only by T helper (Th)2 cells, but is now known to be made by a variety of cell types. During many infections, CD4+ T cells produce both interferon (IFN)-γ, the signature Th1 cytokine, and IL-10. New data now show that the IL-10 produced by effector Th1 cells helps limit the collateral damage caused by exaggerated inflammation. But this control may also limit the effectiveness of the immune response, resulting in a failure to fully eliminate pathogens

    Production of type I interferons: plasmacytoid dendritic cells and beyond

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are specialized producers of type I interferons (IFNs) that respond to most viruses. Because of their antiviral activity and regulatory functions in innate and adaptive immunity, type I IFNs are important not only for antiviral resistance but also in other types of infections and in immune pathology. Here we discuss recent data that begin to reveal the unique molecular mechanisms underlying the remarkably rapid and efficient type I IFN production by pDCs

    Reciprocal Activating Interaction between Natural Killer Cells and Dendritic Cells

    Get PDF
    We analyzed the interaction between human peripheral blood natural killer (NK) cells and monocyte-derived immature dendritic cells (DC). Fresh NK cells were activated, as indicated by the induced expression of the CD69 antigen, and their cytolytic activity was strongly augmented by contact with lipopolysaccharide (LPS)-treated mature DC, or with immature DC in the presence of the maturation stimuli LPS, Mycobacterium tuberculosis or interferon (IFN)-α. Reciprocally, fresh NK cells cultured with immature DC in the presence of the maturation stimuli strongly enhanced DC maturation and interleukin (IL)-12 production. IL-2–activated NK cells directly induced maturation of DC and enhanced their ability to stimulate allogeneic naive CD4+ T cells. The effects of NK cells were cell contact dependent, although the secretion of IFN-γ and TNF also contributed to DC maturation. Within peripheral blood lymphocytes the reciprocal activating interaction with DC was restricted to NK cells, because the other lymphocyte subsets were neither induced to express CD69, nor induced to mature in contact with DC. These data demonstrated for the first time a bidirectional cross talk between NK cells and DC, in which NK cells activated by IL-2 or by mature DC induce DC maturation

    Type I interferon dependence of plasmacytoid dendritic cell activation and migration

    Get PDF
    Differential expression of Toll-like receptor (TLR) by conventional dendritic cells (cDCs) and plasmacytoid DC (pDCs) has been suggested to influence the type of immune response induced by microbial pathogens. In this study we show that, in vivo, cDCs and pDCs are equally activated by TLR4, -7, and -9 ligands. Type I interferon (IFN) was important for pDC activation in vivo in response to all three TLR ligands, whereas cDCs required type I IFN signaling only for TLR9- and partially for TLR7-mediated activation. Although TLR ligands induced in situ migration of spleen cDC into the T cell area, spleen pDCs formed clusters in the marginal zone and in the outer T cell area 6 h after injection of TLR9 and TLR7 ligands, respectively. In vivo treatment with TLR9 ligands decreased pDC ability to migrate ex vivo in response to IFN-induced CXCR3 ligands and increased their response to CCR7 ligands. Unlike cDCs, the migration pattern of pDCs required type I IFN for induction of CXCR3 ligands and responsiveness to CCR7 ligands. These data demonstrate that mouse pDCs differ from cDCs in the in vivo response to TLR ligands, in terms of pattern and type I IFN requirement for activation and migration

    Modelling Energy Consumption based on Resource Utilization

    Full text link
    Power management is an expensive and important issue for large computational infrastructures such as datacenters, large clusters, and computational grids. However, measuring energy consumption of scalable systems may be impractical due to both cost and complexity for deploying power metering devices on a large number of machines. In this paper, we propose the use of information about resource utilization (e.g. processor, memory, disk operations, and network traffic) as proxies for estimating power consumption. We employ machine learning techniques to estimate power consumption using such information which are provided by common operating systems. Experiments with linear regression, regression tree, and multilayer perceptron on data from different hardware resulted into a model with 99.94\% of accuracy and 6.32 watts of error in the best case.Comment: Submitted to Journal of Supercomputing on 14th June, 201

    The Inducible CXCR3 Ligands Control Plasmacytoid Dendritic Cell Responsiveness to the Constitutive Chemokine Stromal Cell–derived Factor 1 (SDF-1)/CXCL12

    Get PDF
    The recruitment of selected dendritic cell (DC) subtypes conditions the class of the immune response. Here we show that the migration of human plasmacytoid DCs (pDCs), the blood natural interferon α–producing cells, is induced upon the collective action of inducible and constitutive chemokines. Despite expression of very high levels of CXCR3, pDCs do not respond efficiently to CXCR3 ligands. However, they migrate in response to the constitutive chemokine stromal cell–derived factor 1 (SDF-1)/CXCL12 and CXCR3 ligands synergize with SDF-1/CXCL12 to induce pDC migration. This synergy reflects a sensitizing effect of CXCR3 ligands, which, independently of a gradient and chemoattraction, decrease by 20–50-fold the threshold of sensitivity to SDF-1/CXCL12. Thus, the ability of the constitutive chemokine SDF-1/CXCL12 to induce pDC recruitment might be controlled by CXCR3 ligands released during inflammation such as in virus infection. SDF-1/CXCL12 and the CXCR3 ligands Mig/CXCL9 and ITAC/CXCL1 display adjacent expression both in secondary lymphoid organs and in inflamed epithelium from virus-induced pathologic lesions. Because pDCs express both the lymph node homing molecule l-selectin and the cutaneous homing molecule cutaneous lymphocyte antigen, the cooperation between inducible CXCR3 ligands and constitutive SDF-1/CXCL12 may regulate recruitment of pDCs either in lymph nodes or at peripheral sites of inflammation

    Flexibility of Mouse Classical and Plasmacytoid-derived Dendritic Cells in Directing T Helper Type 1 and 2 Cell Development: Dependency on Antigen Dose and Differential Toll-like Receptor Ligation

    Get PDF
    Distinct dendritic cell (DC) subsets have been suggested to be preprogrammed to direct either T helper cell (Th) type 1 or Th2 development, although more recently different pathogen products or stimuli have been shown to render these DCs more flexible. It is still unclear how distinct mouse DC subsets cultured from bone marrow precursors, blood, or their lymphoid tissue counterparts direct Th differentiation. We show that mouse myeloid and plasmacytoid precursor DCs (pDCs) cultured from bone marrow precursors and ex vivo splenic DC subsets can induce the development of both Th1 and Th2 effector cells depending on the dose of antigen. In general, high antigen doses induced Th1 cell development whereas low antigen doses induced Th2 cell development. Both cultured and ex vivo splenic plasmacytoid-derived DCs enhanced CD4+ T cell proliferation and induced strong Th1 cell development when activated with the Toll-like receptor (TLR)9 ligand CpG, and not with the TLR4 ligand lipopolysaccharide (LPS). The responsiveness of plasmacytoid pDCs to CpG correlated with high TLR9 expression similarly to human plasmacytoid pDCs. Conversely, myeloid DCs generated with granulocyte/macrophage colony-stimulating factor enhanced Th1 cell development when stimulated with LPS as a result of their high level of TLR4 expression. Polarized Th1 responses resulting from high antigen dose were not additionally enhanced by stimulation of DCs by TLR ligands. Thus, the net effect of antigen dose, the state of maturation of the DCs together with the stimulation of DCs by pathogen-derived products, will determine whether a Th1 or Th2 response develops

    The Development of Murine Plasmacytoid Dendritic Cell Precursors Is Differentially Regulated by FLT3-ligand and Granulocyte/Macrophage Colony-Stimulating Factor

    Get PDF
    Plasmacytoid predendritic cells or type 1 interferon (IFN)-producing cells (IPCs) have recently been identified in mice. Although culture systems giving rise to different murine dendritic cell subsets have been established, the developmental regulation of murine plasmacytoid IPCs and the culture conditions leading to their generation remain unknown. Here we show that large numbers of over 40% pure CD11c+CD11b−B220+Gr-1+ IPCs can be generated from mouse bone marrow cultures with FLT3-ligand. By contrast GM-CSF or TNF-α, which promote the generation of CD11c+CD11b+B220− myeloid DCs, block completely the development of IPCs. IPCs generated display similar features to human IPCs, such as the plasmacytoid morphology, the ability to produce large amounts of IFN-α in responses to herpes simplex virus, and the capacity to respond to ligands for Toll-like receptor 9 (TLR-9; CpG ODN 1668), but not to ligands for TLR-4 (lipopolysaccharide [LPS]). Unlike human IPCs which produce little IL-12p70, mouse IPCs produce IL-12p70 in response to CpG ODN 1668 and herpes simplex virus. This study demonstrates that the development of murine CD11c+CD11b−B220+Gr-1+ IPCs and CD11c+CD11b+B220− myeloid DCs is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. Human IPCs and mouse IPCs display different ability to produce IL-12p70. Large numbers of mouse IPCs can now be obtained from total bone marrow culture

    TAP-1 indirectly regulates CD4+ T cell priming in Toxoplasma gondii infection by controlling NK cell IFN-γ production

    Get PDF
    To investigate if transporter associated with antigen processing (TAP)–1 is required for CD8+ T cell–mediated control of Toxoplasma gondii in vivo, we compared the resistance of TAP-1−/−, CD8−/−, and wild-type (WT) mice to infection with the parasite. Unexpectedly, TAP-1−/− mice displayed greater susceptibility than CD8−/−, β2-microglobulin−/− (β2m−/−), or WT mice to infection with an avirulent parasite strain. The decreased resistance of the TAP-1−/− mice correlated with a reduction in the frequency of activated (CD62Llow CD44hi) and interferon (IFN)-γ–producing CD4+ T cells. Interestingly, infected TAP-1−/− mice also showed reduced numbers of IFN-γ–producing natural killer (NK) cells relative to WT, CD8−/−, or β2m−/− mice, and after NK cell depletion both CD8−/− and WT mice succumbed to infection with the same kinetics as TAP-1−/− animals and displayed impaired CD4+ T cell IFN-γ responses. Moreover, adoptive transfer of NK cells obtained from IFN-γ+/+, but not IFN-γ−/−, animals restored the CD4+ T cell response of infected TAP-1−/− mice to normal levels. These results reveal a role for TAP-1 in the induction of IFN-γ–producing NK cells and demonstrate that NK cell licensing can influence host resistance to infection through its effect on cytokine production in addition to its role in cytotoxicity
    • …
    corecore