1,241 research outputs found
Natural FLRW metrics on the Lie group of nonzero quaternions
It is shown that the Lie group of invertible elements of the quaternion
algebra carries a family of natural closed Friedmann-Lemaitre-Robertson-Walker
metrics.Comment: A slightly more technical version of "Natural geometry of nonzero
quaternions" IJTP 46 (2) (2007) 251-25
Comment on "On the uncertainty relations and squeezed states for the quantum mechanics on a circle"
It is shown by examples that the position uncertainty on a circle, proposed
recently by Kowalski and Rembieli\'nski [J. Phys. A 35 (2002) 1405] is not
consistent with the state localization. We argue that the relevant
uncertainties and uncertainty relations (UR's) on a circle are that based on
the Gram-Robertson matrix. Several of these generalized UR's are displayed and
related criterions for squeezed states are discussed.Comment: 5 pages, LaTex2e, 3 figures.ep
Barut-Girardello coherent states for u(p,q) and sp(N,R) and their macroscopic superpositions
The Barut-Girardello coherent states (BG CS) representation is extended to
the noncompact algebras u(p,q) and sp(N,R) in (reducible) quadratic boson
realizations. The sp(N,R) BG CS take the form of multimode ordinary
Schr\"odinger cat states. Macroscopic superpositions of 2^{n-1} sp(N,R) CS (2^n
canonical CS, n=1,2,...) are pointed out which are overcomplete in the N-mode
Hilbert space and the relation between the canonical CS and the u(p,q) BG-type
CS representations is established. The sets of u(p,q) and sp(N,R) BG CS and
their discrete superpositions contain many states studied in quantum optics
(even and odd N-mode CS, pair CS) and provide an approach to quadrature
squeezing, alternative to that of intelligent states. New subsets of weakly and
strongly nonclassical states are pointed out and their statistical properties
(first- and second-order squeezing, photon number distributions) are discussed.
For specific values of the angle parameters and small amplitude of the
canonical CS components these states approaches multimode Fock states with one,
two or three bosons/photons. It is shown that eigenstates of a squared
non-Hermitian operator A^2 (generalized cat states) can exhibit squeezing of
the quadratures of A.Comment: 29 pages, LaTex, 5 figures. Improvements in text, corrections in some
formulas. To appear in J. Phys. A, v. 3
Nucleation at the DNA supercoiling transition
Twisting DNA under a constant applied force reveals a thermally activated
transition into a state with a supercoiled structure known as a plectoneme.
Using transition state theory, we predict the rate of this plectoneme
nucleation to be of order 10^4 Hz. We reconcile this with experiments that have
measured hopping rates of order 10 Hz by noting that the viscosity of the bead
used to manipulate the DNA limits the measured rate. We find that the intrinsic
bending caused by disorder in the base-pair sequence is important for
understanding the free energy barrier that governs the transition. Both
analytic and numerical methods are used in the calculations. We provide
extensive details on the numerical methods for simulating the elastic rod model
with and without disorder.Comment: 18 pages, 15 figure
Unpolarized light in quantum optics
We present a new derivation of the unpolarized quantum states of light, whose
general form was first derived by Prakash and Chandra [Phys. Rev. A 4, 796
(1971)]. Our derivation makes use of some basic group theory, is
straightforward, and offers some new insights.Comment: 3 pages, REVTeX, presented at ICQO'200
Three planets around HD 27894. A close-in pair with a 2:1 period ratio and an eccentric Jovian planet at 5.4 AU
Aims. Our new program with HARPS aims to detect mean motion resonant
planetary systems around stars which were previously reported to have a single
bona fide planet, often based only on sparse radial velocity data. Methods.
Archival and new HARPS radial velocities for the K2V star HD 27894 were
combined and fitted with a three-planet self-consistent dynamical model. The
best-fit orbit was tested for long-term stability. Results. We find clear
evidence that HD 27894 is hosting at least three massive planets. In addition
to the already known Jovian planet with a period 18 days
we discover a Saturn-mass planet with 36 days, likely in
a 2:1 mean motion resonance with the first planet, and a cold massive planet
( 5.3 ) with a period 5170
days on a moderately eccentric orbit ( = 0.39). Conclusions. HD
27894 is hosting a massive, eccentric giant planet orbiting around a tightly
packed inner pair of massive planets likely involved in an asymmetric 2:1 mean
motion resonance. HD 27894 may be an important milestone for probing planetary
formation and evolution scenarios.Comment: 4 pages, 2 tables, 3 figures. Accepted for publication in A&A Letters
to the Edito
- …