996 research outputs found
An application of the Maslov complex germ method to the 1D nonlocal Fisher-KPP equation
A semiclassical approximation approach based on the Maslov complex germ
method is considered in detail for the 1D nonlocal
Fisher-Kolmogorov-Petrovskii-Piskunov equation under the supposition of weak
diffusion. In terms of the semiclassical formalism developed, the original
nonlinear equation is reduced to an associated linear partial differential
equation and some algebraic equations for the coefficients of the linear
equation with a given accuracy of the asymptotic parameter. The solutions of
the nonlinear equation are constructed from the solutions of both the linear
equation and the algebraic equations. The solutions of the linear problem are
found with the use of symmetry operators. A countable family of the leading
terms of the semiclassical asymptotics is constructed in explicit form.
The semiclassical asymptotics are valid by construction in a finite time
interval. We construct asymptotics which are different from the semiclassical
ones and can describe evolution of the solutions of the
Fisher-Kolmogorov-Petrovskii-Piskunov equation at large times. In the example
considered, an initial unimodal distribution becomes multimodal, which can be
treated as an example of a space structure.Comment: 28 pages, version accepted for publication in Int. J. Geom. Methods
Mod. Phy
The Trajectory-Coherent Approximation and the System of Moments for the Hartree-Type Equation
The general construction of quasi-classically concentrated solutions to the
Hartree-type equation, based on the complex WKB-Maslov method, is presented.
The formal solutions of the Cauchy problem for this equation, asymptotic in
small parameter \h (\h\to0), are constructed with a power accuracy of
O(\h^{N/2}), where N is any natural number. In constructing the
quasi-classically concentrated solutions, a set of Hamilton-Ehrenfest equations
(equations for middle or centered moments) is essentially used. The nonlinear
superposition principle has been formulated for the class of quasi-classically
concentrated solutions of the Hartree-type equations. The results obtained are
exemplified by the one-dimensional equation Hartree-type with a Gaussian
potential.Comments: 6 pages, 4 figures, LaTeX Report no: Subj-class:
Accelerator PhysicsComment: 36 pages, LaTeX-2
Photon recoil momentum in a Bose-Einstein condensate of a dilute gas
We develop a "minimal" microscopic model to describe a
two-pulse-Ramsay-interferometer-based scheme of measurement of the photon
recoil momentum in a Bose-Einstein condensate of a dilute gas [Campbell et al.,
Phys. Rev. Lett. 94, 170403 (2005)]. We exploit the truncated coupled
Maxwell-Schroedinger equations to elaborate the problem. Our approach provides
a theoretical tool to reproduce essential features of the experimental results.
Additionally, we enable to calculate the quantum-mechanical mean value of the
recoil momentum and its statistical distribution that provides a detailed
information about the recoil event.Comment: 6 pages, 4 figure
Impurity-induced modulation of terahertz waves in optically excited GaAs
The effect of the photoinduced absorption of terahertz (THz) radiation in a
semi-insulating GaAs crystal is studied by the pulsed THz transmission
spectroscopy. We found that a broad-band modulation of THz radiation may be
induced by a low-power optical excitation in the spectral range of the impurity
absorption band in GaAs. The measured modulation achieves 80\%. The amplitude
and frequency characteristics of the resulting THz modulator are critically
dependent on the carrier density and relaxation dynamics in the conduction band
of GaAs. In semi-insulating GaAs crystals, the carrier density created by the
impurity excitation is controlled by the rate of their relaxation to the
impurity centers. The relaxation rate and, consequently, the frequency
characteristics of the modulator can be optimized by an appropriate choice of
the impurities and their concentrations. The modulation parameters can be also
controlled by the crystal temperature and by the power and photon energy of the
optical excitation. These experiments pave the way to the low-power fast
optically-controlled THz modulation, imaging, and beam steering.Comment: 5 pages, 3 figure
- …