7 research outputs found
Pdb-tools: A swiss army knife for molecular structures [version 1; referees: 2 approved]
The pdb-tools are a collection of Python scripts for working with molecular structure data in the Protein Data Bank (PDB) format. They allow users to edit, convert, and validate PDB files, from the command-line, in a simple but efficient manner. The pdb-tools are implemented in Python, without any external dependencies, and are freely available under the open-source Apache License at https://github.com/haddocking/pdb-tools/ and on PyPI
Pdb-tools : A swiss army knife for molecular structures [version 1; referees: 2 approved]
The pdb-tools are a collection of Python scripts for working with molecular structure data in the Protein Data Bank (PDB) format. They allow users to edit, convert, and validate PDB files, from the command-line, in a simple but efficient manner. The pdb-tools are implemented in Python, without any external dependencies, and are freely available under the open-source Apache License at https://github.com/haddocking/pdb-tools/ and on PyPI
Clustering biomolecular complexes by residue contacts similarity
Inaccuracies in computational molecular modeling methods are often counterweighed by brute-force generation of a plethora of putative solutions. These are then typically sieved via structural clustering based on similarity measures such as the root mean square deviation (RMSD) of atomic positions. Albeit widely used, these measures suffer from several theoretical and technical limitations (e.g., choice of regions for fitting) that impair their application in multicomponent systems (N > 2), large-scale studies (e.g., interactomes), and other time-critical scenarios. We present here a simple similarity measure for structural clustering based on atomic contacts--the fraction of common contacts--and compare it with the most used similarity measure of the protein docking community--interface backbone RMSD. We show that this method produces very compact clusters in remarkably short time when applied to a collection of binary and multicomponent protein-protein and protein-DNA complexes. Furthermore, it allows easy clustering of similar conformations of multicomponent symmetrical assemblies in which chain permutations can occur. Simple contact-based metrics should be applicable to other structural biology clustering problems, in particular for time-critical or large-scale endeavors
Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions
Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies
Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions
International audienceCommunity-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies
Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions
Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies
Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions
Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies