8 research outputs found

    Comparison of Different Sampling Methods to Catch Lymphatic Filariasis Vectors in a Sudan Savannah Area of Mali

    Get PDF
    There is a need for better tools to monitor the transmission of lymphatic filariasis and malaria in areas undergoing interventions to interrupt transmission. Therefore, mosquito collection methods other than human landing catch (HLC) are needed. This study aimed to compare the Ifakara tent trap type C (ITTC) and the Biogents sentinel trap (BGST) to the HLC in areas with different vector densities. Mosquitoes were collected in two villages in Mali from July to December in 2011 and 2012. The three methods were implemented at each site with one ITTC, one BGST, and one HLC unit that consisted of one room with two collectors—one indoor and the other outdoor. The Anopheles collected in 2011 were individually dissected, whereas those from 2012 were screened in pools using reverse transcription-polymerase chain reaction (RT-PCR) to determine the maximum infection prevalence likelihood (MIPL) for Wuchereria bancrofti and Plasmodium falciparum. The dissection of the females also allowed to assess the parity rates, as well its results. Over the 2 years, the HLC method collected 1,019 Anopheles, yields that were 34- and 1.5-fold higher than those with the BGST and ITTC, respectively. None of the dissected Anopheles were infected. The RT-PCR results showed comparable MIPL between HLC and ITTC for W. bancrofti with one infected pool from each trap’s yield (respectively 0.03% [0.0009–0.2%] and 0.04% [0.001–0.2%]). For P. falciparum, no infected pool was recovered from BGST. The ITTC is a good alternative to HLC for xenomonitoring of program activities

    A cross-sectional study of the filarial and Leishmania co-endemicity in two ecologically distinct settings in Mali

    No full text
    Abstract Background Filariasis and leishmaniasis are two neglected tropical diseases in Mali. Due to distribution and associated clinical features, both diseases are of concern to public health. The goal of this study was to determine the prevalence of co-infection with filarial (Wuchereria bancrofti and Mansonella perstans) and Leishmania major parasites in two ecologically distinct areas of Mali, the Kolokani district (villages of Tieneguebougou and Bougoudiana) in North Sudan Savanna area, and the district of Kolondieba (village of Boundioba) in the South Sudan Savanna area. Methods The prevalence of co-infection (filarial and Leishmania) was measured based on (i) Mansonella perstans microfilaremia count and/or filariasis immunochromatographic test (ICT) for Wuchereria bancrofti-specific circulating antigen, and (ii) the prevalence of delayed type hypersensitivity (DTH) responses to Leishmania measured by leishmanin skin test (LST). Results In this study, a total of 930 volunteers between the age of 18 and 65 were included from the two endemic areas of Kolokani and Kolondieba. In general, in both areas, filarial infection was more prevalent than Leishmania infection with an overall prevalence of 15.27% (142/930) including 8.7% (81/930) for Mansonella perstans and 8% (74/930) for Wuchereria bancrofti-specific circulating antigen. The prevalence of Leishmania major infection was 7.7% (72/930) and was significantly higher in Tieneguebougou and Bougoudiana (15.05%; 64/425) than in Boundioba (2.04%; 8/505) (χ2 = 58.66, P < 0.0001). Among the filarial infected population, nearly 10% (14/142) were also positive for Leishmania with an overall prevalence of co-infection of 1.50% (14/930) varying from 2.82% (12/425) in Tieneguebougou and Bougoudiana to 0.39% (2/505) in Boundioba (P = 0.0048). Conclusion This study established the existence of co-endemicity of filarial and Leishmania infections in specific regions of Mali. Since both filarial and Leishmania infections are vector-borne with mosquitoes and sand flies as respective vectors, an integrated vector control approach should be considered in co-endemic areas. The effect of potential interaction between filarial and Leishmania parasites on the disease outcomes may be further studied

    Individuals co-exposed to sand fly saliva and filarial parasites exhibit altered monocyte function.

    No full text
    BackgroundIn Mali, cutaneous leishmaniasis (CL) and filariasis are co-endemic. Previous studies in animal models of infection have shown that sand fly saliva enhance infectivity of Leishmania parasites in naĂŻve hosts while saliva-specific adaptive immune responses may protect against cutaneous and visceral leishmaniasis. In contrast, the human immune response to Phlebotomus duboscqi (Pd) saliva, the principal sand fly vector in Mali, was found to be dichotomously polarized with some individuals having a Th1-dominated response and others having a Th2-biased response. We hypothesized that co-infection with filarial parasites may be an underlying factor that modulates the immune response to Pd saliva in endemic regions.Methodology/principal findingsTo understand which cell types may be responsible for polarizing human responses to sand fly saliva, we investigated the effect of salivary glands (SG) of Pd on human monocytes. To this end, elutriated monocytes were cultured in vitro, alone, or with SG, microfilariae antigen (MF ag) of Brugia malayi, or LPS, a positive control. The mRNA expression of genes involved in inflammatory or regulatory responses was then measured as were cytokines and chemokines associated with these responses. Monocytes of individuals who were not exposed to sand fly bites (mainly North American controls) significantly upregulated the production of IL-6 and CCL4; cytokines that enhance leishmania parasite establishment, in response to SG from Pd or other vector species. This selective inflammatory response was lost in individuals that were exposed to sand fly bites which was not changed by co-infection with filarial parasites. Furthermore, infection with filarial parasites resulted in upregulation of CCL22, a type-2 associated chemokine, both at the mRNA levels and by its observed effect on the frequency of recruited monocytes.Conclusions/significanceTogether, our data suggest that SG or recombinant salivary proteins from Pd alter human monocyte function by upregulating selective inflammatory cytokines

    Factors Associated with Wuchereria bancrofti Microfilaremia in an Endemic Area of Mali

    Get PDF
    Although Wuchereria bancrofti (Wb), the causative agent of lymphatic filariasis, is endemic throughout Mali, the prevalence of Wb microfilaremia (Mf) can vary widely between villages despite similar prevalence of infection as assessed by circulating antigen. To examine this variation, cross-sectional data obtained during screening prior to an interventional study in two neighboring villages in Mali were analyzed. The overall prevalence of Wb, as assessed by Wb Cag (circulating antigen), was 50.3% among 373 participants, aged 14-65. Wb Mf-positive and negative individuals appeared randomly distributed across the two villages (Moran’s I spatial statistic = -0.01, Z score = 0.1, P > 0.05). Among the 187 subjects positive for Wb CAg, 117 (62.5%) had detectable Mansonella perstans microfilaremia (Mp Mf) and 64(34.2%) had detectable Wb microfilaremia. The prevalence of Mp microfilaremia was 73.4% in the Wb Mf-positive group (as compared to 56.9% in the Wb Mf-negative group; p=0.01), and median Wb Mf load was increased in co-infected subjects (267 Mf/ml vs 100 Mf/ml; p < 0.001). In multivariate analysis, village of residence, Mp Mf positivity and gender were significantly associated with Wb Mf positivity. After controlling for age, gender and village of residence, the odds of being Wb Mf positive was 2.67 times higher in Mp positive individuals (95% CI [1.42-5.01]). Given the geographical overlap between Mp and Wb in Africa, a better understanding of the distribution and prevalence of Mp could assist national LF control programs in predicting areas of high Wb mf prevalence that may require closer surveillance
    corecore