122 research outputs found

    Structured immune work-up in healthy children with a first episode of severe bacterial infection: a 7-year single-center study

    Full text link
    Background: Severe bacterial infections (SBI) in otherwise healthy children are rare and may represent an underlying impairment of the immune system including primary immunodeficiency (PID). However, it is unclear if and how children should be assessed. Methods: We retrospectively analyzed data from hospital records of previously healthy children aged 3 days to 18 years with SBI including pleuropneumonia, meningitis, and/or sepsis. Patients were diagnosed or immunologically followed-up between 2013/01/01 and 2020/03/31. Results: Out of 432 children with SBI, 360 children could be analyzed. Follow-up data were available for 265 (74%) children, of whom 244 children (92%) had immunological testing. Laboratory abnormalities were found in 51 of 244 patients (21%), with 3 deaths (1%). There were 14 (6%) children with immunodeficiency considered clinically relevant (3 complement deficiencies, 1 autoimmune neutropenia, 10 humoral immunodeficiencies) and 27 (11%) with milder humoral abnormalities or findings suggestive of delayed adaptive immune maturation. Conclusions: A substantial proportion of children with SBI may benefit from routine immunological testing, revealing (potentially) clinically relevant impaired immune function in 6-17% of children. The identification of immune abnormalities allows for specific counselling of families and optimization of preventive measures such as booster vaccinations to avoid future SBI episodes

    Gout in pediatric renal transplant recipients

    Get PDF
    Clinical gout has rarely been described after pediatric renal transplantation (RTx), although asymptomatic hyperuricemia is common in these patients. We describe three male pediatric patients who presented with gouty arthritis 7-8.5 years following RTx. Since receiving allopurinol, all patients had been free of gouty symptoms. To prevent severe bone marrow depletion, the dosage of azathioprine, an immunosupressant drug, was reduced by 50% to prevent interaction with allopurinol. Because atypical presentation of gout can occur, a high index of suspicion is needed to allow appropriate diagnosis of this disease in patients with skeletal pain after RT

    Angeborene Immundefekte mit vorwiegender Störung der Antikörperproduktion

    Full text link
    Angeborene Immundefekte, welche überwiegend mit einer quantitativ oder funktionell eingeschränkten Antikörperantwort einhergehen (Antikörperdefekte), zählen zu den häufigsten Formen primärer Immundefizienz mit einer geschätzten Inzidenz zwischen 1:400 und 1:100.000. Gemäß der aktualisierten Klassifizierung der IUIS (International Union of Immunological Societies) werden diese Störungen in 4 verschiedenen Untergruppen eingeteilt, basierend v. a. auf der Ausprägung des Antikörpermangels sowie nummerischer Veränderungen der B-Zellen. Antikörper-Defekte sind durch Störungen der B-Zell-Entwicklung im Knochenmark bzw. durch Einschränkung der Proliferation, Differenzierung oder Ausreifung von B-Zellen verursacht. Patienten mit Antikörperdefekten leiden typischerweise unter rezidivierenden Infektionen, welche in der Regel durch (kapseltragende) Bakterien, wie z. B. H. influenzae oder S. pneumoniae, verursacht werden. Charakteristischerweise kommt es bei betroffenen Patienten zu sogenannten Schleimhaut-assoziierten Infektionen, wie Otitiden, Pneumonien und bei älteren Patienten auch Sinusitiden. Die Therapie besteht in einer frühzeitigen und konsequenten Therapie von Infektionen und bei schweren Verlaufsformen in der regelmäßigen prophylaktischen Gabe von intravenös oder subkutan verabreichten Immunglobulinen vom Typ G (IgG)

    Curation and expansion of Human Phenotype Ontology for defined groups of inborn errors of immunity

    Full text link
    BACKGROUND Accurate, detailed, and standardized phenotypic descriptions are essential to support diagnostic interpretation of genetic variants and to discover new diseases. The Human Phenotype Ontology (HPO), extensively used in rare disease research, provides a rich collection of vocabulary with standardized phenotypic descriptions in a hierarchical structure. However, to date, the use of HPO has not yet been widely implemented in the field of inborn errors of immunity (IEIs), mainly due to a lack of comprehensive IEI-related terms. OBJECTIVES We sought to systematically review available terms in HPO for the depiction of IEIs, to expand HPO, yielding more comprehensive sets of terms, and to reannotate IEIs with HPO terms to provide accurate, standardized phenotypic descriptions. METHODS We initiated a collaboration involving expert clinicians, geneticists, researchers working on IEIs, and bioinformaticians. Multiple branches of the HPO tree were restructured and extended on the basis of expert review. Our ontology-guided machine learning coupled with a 2-tier expert review was applied to reannotate defined subgroups of IEIs. RESULTS We revised and expanded 4 main branches of the HPO tree. Here, we reannotated 73 diseases from 4 International Union of Immunological Societies-defined IEI disease subgroups with HPO terms. We achieved a 4.7-fold increase in the number of phenotypic terms per disease. Given the new HPO annotations, we demonstrated improved ability to computationally match selected IEI cases to their known diagnosis, and improved phenotype-driven disease classification. CONCLUSIONS Our targeted expansion and reannotation presents enhanced precision of disease annotation, will enable superior HPO-based IEI characterization, and hence benefit both IEI diagnostic and research activities

    Multicenter Randomized Trial of Methylprednisolone vs. Intravenous Immunoglobulins to Treat the Pediatric Inflammatory Multisystem Syndrome-Temporally Associated With SARS-CoV-2 (PIMS-TS): Protocol of the Swissped RECOVERY Trial

    Full text link
    INTRODUCTION In 2020, a new disease entitled Pediatric Inflammatory Multisystem Syndrome temporally associated with COVID-19 (PIMS-TS), or Multisystem Inflammatory Syndrome in Children (MIS-C), emerged, with thousands of children affected globally. There is no available evidence based on randomized controlled trials (RCT) to date on the two most commonly used immunomodulatory treatments, intravenous immunoglobulins (IVIG) and corticosteroids. Therefore, the Swissped RECOVERY trial was conducted to assess whether intravenous (IV) methylprednisolone shortens hospital length of stay compared with IVIG. METHODS AND ANALYSIS Swissped RECOVERY is an ongoing investigator-initiated, open-label, multicenter two-arm RCT in children and adolescents <18 years hospitalized with a diagnosis of PIMS-TS. The trial is recruiting at 10 sites across Switzerland. Patients diagnosed with PIMS-TS are randomized 1:1 to methylprednisolone IV (10 mg/kg/day for 3 days) or IVIG (2 g/kg as a single dose). The primary outcome is hospital length of stay censored at day 28, death, or discharge (whichever is first). The target total sample size is ~80 patients 1:1 randomized to each study arm. Ancillary and exploratory studies on inflammation, vaccination acceptance and coverage, long-term outcomes, and healthcare costs are pre-planned. SIGNIFICANCE Currently, robust trial evidence for the treatment of PIMS-TS is lacking, with a controversy surrounding the use of corticosteroids vs. IVIG. This trial will provide evidence for the effectiveness and safety of these two treatments. ETHICS AND DISSEMINATION The study protocol, which was designed based on the U.K. RECOVERY trial, the patient information and consent forms, and other study-specific study documents were approved by the local ethics committees (Project ID: 2021-00362). REGISTRATION DETAILS The study is registered on the Swiss National Clinical Trials Portal (SNCTP000004720) and Clinicaltrials.gov (NCT04826588)

    Different B cell subpopulations show distinct patterns in their IgH repertoire metrics

    Full text link
    Several human B cell subpopulations are recognised in the peripheral blood, which play distinct roles in the humoral immune response. These cells undergo developmental and maturational changes involving VDJ recombination, somatic hypermutation and class switch recombination, altogether shaping their immunoglobulin heavy chain (IgH) repertoire. Here, we sequenced the IgH repertoire of naïve, marginal zone, switched and plasma cells from 10 healthy adults along with matched unsorted and in silico separated CD19+ bulk B cells. Using advanced bioinformatic analysis and machine learning, we show that sorted B cell subpopulations are characterised by distinct repertoire characteristics on both the individual sequence and the repertoire level. Sorted subpopulations shared similar repertoire characteristics with their corresponding in silico separated subsets. Furthermore, certain IgH repertoire characteristics correlated with the position of the constant region on the IgH locus. Overall, this study provides unprecedented insight over mechanisms of B cell repertoire control in peripherally circulating B cell subpopulations. Keywords: B cells; diagnostics; human; immunoglobulin; immunology; inflammation; machine learning; prediction; repertoire

    Changes in epigenetic profiles throughout early childhood and their relationship to the response to pneumococcal vaccination

    Full text link
    Background: Pneumococcal infections are a major cause of morbidity and mortality in young children and immaturity of the immune system partly underlies poor vaccine responses seen in the young. Emerging evidence suggests a key role for epigenetics in the maturation and regulation of the immune system in health and disease. The study aimed to investigate epigenetic changes in early life and to understand the relationship between the epigenome and antigen-specific antibody responses to pneumococcal vaccination. Methods: The epigenetic profiles from 24 healthy children were analyzed at 12 months prior to a booster dose of the 13-valent pneumococcal conjugate vaccine (PCV-13), and at 24 months of age, using the Illumina Methylation 450 K assay and assessed for differences over time and between high and low vaccine responders. Results: Our analysis revealed 721 significantly differentially methylated positions between 12 and 24 months (FDR < 0.01), with significant enrichment in pathways involved in the regulation of cell-cell adhesion and T cell activation. Comparing high and low vaccine responders, we identified differentially methylated CpG sites (P value < 0.01) associated with HLA-DPB1 and IL6. Conclusion: These data imply that epigenetic changes that occur during early childhood may be associated with antigen-specific antibody responses to pneumococcal vaccines. Keywords: Childhood; DNA methylation; Epigenetics; Immune system; Pneumococcal vaccination; Vaccine response

    B-Cell Reconstitution After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis

    Full text link
    Background and objectives: Autologous hematopoietic stem cell transplantation (aHSCT) is increasingly used to treat aggressive forms of multiple sclerosis (MS). This procedure is believed to result in an immune reset and restoration of a self-tolerant immune system. Immune reconstitution has been extensively studied for T cells, but only to a limited extent for B cells. As increasing evidence suggests an important role of B cells in MS pathogenesis, we sought here to better understand reconstitution and the extent of renewal of the B-cell system after aHSCT in MS. Methods: Using longitudinal multidimensional flow cytometry and immunoglobulin heavy chain (IgH) repertoire sequencing following aHSCT with BCNU + Etoposide + Ara-C + Melphalan anti-thymocyte globulin, we analyzed the B-cell compartment in a cohort of 20 patients with MS in defined intervals before and up to 1 year after aHSCT and compared these findings with data from healthy controls. Results: Total B-cell numbers recovered within 3 months and increased above normal levels 1 year after transplantation, successively shifting from a predominantly transitional to a naive immune phenotype. Memory subpopulations recovered slowly and remained below normal levels with reduced repertoire diversity 1 year after transplantation. Isotype subclass analysis revealed a proportional shift toward IgG1-expressing cells and a reduction in IgG2 cells. Mutation analysis of IgH sequences showed that highly mutated memory B cells and plasma cells may transiently survive conditioning while the analysis of sequence cluster overlap, variable (IGHV) and joining (IGHJ) gene usage and repertoire diversity suggested a renewal of the late posttransplant repertoire. In patients with early cytomegalovirus reactivation, reconstitution of naive and memory B cells was delayed. Discussion: Our detailed characterization of B-cell reconstitution after aHSCT in MS indicates a reduced reactivation potential of memory B cells up to 1 year after transplantation, which may leave patients susceptible to infection, but may also be an important aspect of its mechanism of action

    Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice

    Full text link
    Most current analysis tools for antibody next-generation sequencing data work with primary sequence descriptors, leaving accompanying structural information unharnessed. We have used novel rapid methods to structurally characterize the complementary-determining regions (CDRs) of more than 180 million human and mouse B-cell receptor (BCR) repertoire sequences. These structurally annotated CDRs provide unprecedented insights into both the structural predetermination and dynamics of the adaptive immune response. We show that B-cell types can be distinguished based solely on these structural properties. Antigen-unexperienced BCR repertoires use the highest number and diversity of CDR structures and these patterns of naïve repertoire paratope usage are highly conserved across subjects. In contrast, more differentiated B-cells are more personalized in terms of CDR structure usage. Our results establish the CDR structure differences in BCR repertoires and have applications for many fields including immunodiagnostics, phage display library generation, and “humanness” assessment of BCR repertoires from transgenic animals. The software tool for structural annotation of BCR repertoires, SAAB+, is available at https://github.com/oxpig/saab_plus

    AIRR Community Guide to Planning and Performing AIRR-Seq Experiments

    Full text link
    The development of high-throughput sequencing of adaptive immune receptor repertoires (AIRR-seq of IG and TR rearrangements) has provided a new frontier for in-depth analysis of the immune system. The last decade has witnessed an explosion in protocols, experimental methodologies, and computational tools. In this chapter, we discuss the major considerations in planning a successful AIRR-seq experiment together with basic strategies for controlling and evaluating the outcome of the experiment. Members of the AIRR Community have authored several chapters in this edition, which cover step-by-step instructions to successfully conduct, analyze, and share an AIRR-seq project
    corecore