153 research outputs found

    Impact of antiplatelet therapy on microvascular thrombosis during ST-elevation myocardial infarction

    Get PDF
    During an acute coronary syndrome, atherosclerotic plaque rupture triggers platelet activation and thrombus formation, which may completely occlude a coronary artery leading to ST-elevation myocardial infarction (STEMI). Although emergency percutaneous coronary intervention (PCI) is effective in re-opening the main coronary arteries, the downstream microvasculature can become obstructed by embolised plaque material and thrombus. Dual antiplatelet therapy is recommended by guidelines and used routinely for the management of STEMI to reduce the risk of recurrent atherothrombotic events. However it is unclear to what extent antiplatelet therapy reduces microvascular thrombosis, largely because most tools to assess microvascular thrombosis only became available after antiplatelet therapy was already used in the majority of patients. Platelets play a central role in key aspects of microvascular thrombosis, such as atherosclerotic plaque-induced thrombus development, inflammation and microvascular dysfunction, making them a potential target for novel therapeutic interventions. Currently, more potent antiplatelet agents like GPIIb/IIIa inhibitors may be administered during PCI directly into coronary arteries with high thrombus burden but it is not well-established whether this reduces microvascular thrombosis and they significantly increase the risk of bleeding. In this review article we discuss the role of platelets in microvascular thrombosis, describe how microvascular thrombosis and obstruction can be assessed clinically and explore potential new antiplatelet treatments for this. In particular, we highlight novel antiplatelet drugs targeting the platelet receptor GPVI, as well as PAR4, GPIb-IX-V and 5HT2A receptors. We also discuss the potential benefit of P-selectin inhibitors as they have proven to be effective in reducing microvascular thrombosis in sickle-cell disease which could translate into potential benefits in acute coronary syndrome.</p

    Aortic calcification and femoral bone density are independently associated with left ventricular mass in patients with chronic kidney disease

    Get PDF
    Background Vascular calcification and reduced bone density are prevalent in chronic kidney disease and linked to increased cardiovascular risk. The mechanism is unknown. We assessed the relationship between vascular calcification, femoral bone density and left ventricular mass in patients with stage 3 non-diabetic chronic kidney disease in a cross-sectional observational study. Methodology and Principal Findings A total of 120 patients were recruited (54% male, mean age 55±14 years, mean glomerular filtration rate 50±13 ml/min/1.73 m2). Abdominal aortic calcification was assessed using lateral lumbar spine radiography and was present in 48%. Mean femoral Z-score measured using dual energy x-ray absorptiometry was 0.60±1.06. Cardiovascular magnetic resonance imaging was used to determine left ventricular mass. One patient had left ventricular hypertrophy. Subjects with aortic calcification had higher left ventricular mass compared to those without (56±16 vs. 48±12 g/m2, P = 0.002), as did patients with femoral Z-scores below zero (56±15 vs. 49±13 g/m2, P = 0.01). In univariate analysis presence of aortic calcification correlated with left ventricular mass (r = 0.32, P = 0.001); mean femoral Z-score inversely correlated with left ventricular mass (r = −0.28, P = 0.004). In a multivariate regression model that included presence of aortic calcification, mean femoral Z-score, gender and 24-hour systolic blood pressure, 46% of the variability in left ventricular mass was explained (P<0.001). Conclusions In patients with stage 3 non-diabetic chronic kidney disease, lower mean femoral Z-score and presence of aortic calcification are independently associated with increased left ventricular mass. Further research exploring the pathophysiology that underlies these relationships is warranted

    Prevalence and Impact of Concomitant Atrial Fibrillation in Patients Undergoing Percutaneous Coronary Intervention for Acute Myocardial Infarction

    Get PDF
    Background: Concomitant atrial fibrillation (AF) is associated with an adverse prognosis in patients with acute myocardial infarction (MI). However, it remains unclear whether this is due to a causal effect of AF or whether AF acts as a surrogate marker for comorbidities in this population. Furthermore, there are limited data on whether coronary artery disease distribution impacts the risk of developing AF. Methods: Consecutive patients admitted with acute MI and treated using percutaneous coronary intervention (PCI) at a single centre were retrospectively identified. Associations between AF and major adverse cardiac and cerebrovascular events (MACCEs) over a median of five years of follow-up were assessed using Cox regression, with adjustment for confounding factors performed using both multivariable modelling and a propensity-score-matched analysis. Results: AF was identified in N = 65/1000 (6.5%) of cases; these patients were significantly older (mean: 73 vs. 65 years, p &lt; 0.001), with lower creatinine clearance (p &lt; 0.001), and were more likely to have a history of cerebrovascular disease (p = 0.011) than those without AF. In addition, patients with AF had a greater propensity for left main stem (p = 0.001) or left circumflex artery (p = 0.004) involvement. Long-term MACCE rates were significantly higher in the AF group than in the non-AF group (50.8% vs. 34.2% at five years), yielding an unadjusted hazard ratio (HR) of 1.86 (95% CI: 1.32–2.64, p &lt; 0.001). However, after adjustment for confounding factors, AF was no longer independently associated with MACCEs, either on multivariable (adjusted HR: 1.25, 95% CI: 0.81–1.92, p = 0.319) or propensity-score-matched (HR: 1.04, 95% CI: 0.59–1.82, p = 0.886) analyses. Conclusions: AF is observed in 6.5% of patients admitted with acute MI, and those with AF are more likely to have significant diseases involving left main or circumflex arteries. Although unadjusted MACCE rates were significantly higher in patients with AF, this effect was not found to remain significant after adjustment for comorbidities. As such, this study provided no evidence to suggest that AF is independently associated with MACCEs

    Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis

    Get PDF
    Background: Hypertension and proteinuria are critically involved in the progression of chronic kidney disease. Despite treatment with renin angiotensin system inhibition, kidney function declines in many patients. Aldosterone excess is a risk factor for progression of kidney disease. Hyperkalaemia is a concern with the use of mineralocorticoid receptor antagonists. We aimed to determine whether the renal protective benefits of mineralocorticoid antagonists outweigh the risk of hyperkalaemia associated with this treatment in patients with chronic kidney disease. Methods: We conducted a meta-analysis investigating renoprotective effects and risk of hyperkalaemia in trials of mineralocorticoid receptor antagonists in chronic kidney disease. Trials were identified from MEDLINE (1966–2014), EMBASE (1947–2014) and the Cochrane Clinical Trials Database. Unpublished summary data were obtained from investigators. We included randomised controlled trials, and the first period of randomised cross over trials lasting ≥4 weeks in adults. Results: Nineteen trials (21 study groups, 1 646 patients) were included. In random effects meta-analysis, addition of mineralocorticoid receptor antagonists to renin angiotensin system inhibition resulted in a reduction from baseline in systolic blood pressure (−5.7 [−9.0, −2.3] mmHg), diastolic blood pressure (−1.7 [−3.4, −0.1] mmHg) and glomerular filtration rate (−3.2 [−5.4, −1.0] mL/min/1.73 m2). Mineralocorticoid receptor antagonism reduced weighted mean protein/albumin excretion by 38.7 % but with a threefold higher relative risk of withdrawing from the trial due to hyperkalaemia (3.21, [1.19, 8.71]). Death, cardiovascular events and hard renal end points were not reported in sufficient numbers to analyse. Conclusions: Mineralocorticoid receptor antagonism reduces blood pressure and urinary protein/albumin excretion with a quantifiable risk of hyperkalaemia above predefined study upper limit

    Aortic Calcification and Femoral Bone Density Are Independently Associated with Left Ventricular Mass in Patients with Chronic Kidney Disease

    Get PDF
    Background Vascular calcification and reduced bone density are prevalent in chronic kidney disease and linked to increased cardiovascular risk. The mechanism is unknown. We assessed the relationship between vascular calcification, femoral bone density and left ventricular mass in patients with stage 3 non-diabetic chronic kidney disease in a cross-sectional observational study. Methodology and Principal Findings A total of 120 patients were recruited (54% male, mean age 55±14 years, mean glomerular filtration rate 50±13 ml/min/1.73 m2). Abdominal aortic calcification was assessed using lateral lumbar spine radiography and was present in 48%. Mean femoral Z-score measured using dual energy x-ray absorptiometry was 0.60±1.06. Cardiovascular magnetic resonance imaging was used to determine left ventricular mass. One patient had left ventricular hypertrophy. Subjects with aortic calcification had higher left ventricular mass compared to those without (56±16 vs. 48±12 g/m2, P = 0.002), as did patients with femoral Z-scores below zero (56±15 vs. 49±13 g/m2, P = 0.01). In univariate analysis presence of aortic calcification correlated with left ventricular mass (r = 0.32, P = 0.001); mean femoral Z-score inversely correlated with left ventricular mass (r = −0.28, P = 0.004). In a multivariate regression model that included presence of aortic calcification, mean femoral Z-score, gender and 24-hour systolic blood pressure, 46% of the variability in left ventricular mass was explained (P<0.001). Conclusions In patients with stage 3 non-diabetic chronic kidney disease, lower mean femoral Z-score and presence of aortic calcification are independently associated with increased left ventricular mass. Further research exploring the pathophysiology that underlies these relationships is warranted

    Chronic activation of human cardiac fibroblasts in vitro attenuates the reversibility of the myofibroblast phenotype

    Get PDF
    Activation of cardiac fibroblasts and differentiation to myofibroblasts underlies development of pathological cardiac fibrosis, leading to arrhythmias and heart failure. Myofibroblasts are characterised by increased α-smooth muscle actin (α-SMA) fibre expression, secretion of collagens and changes in proliferation. Transforming growth factor-beta (TGF-β) and increased mechanical stress can initiate myofibroblast activation. Reversibility of the myofibroblast phenotype has been observed in murine cells but has not been explored in human cardiac fibroblasts. In this study, chronically activated adult primary human ventricular cardiac fibroblasts and human induced pluripotent stem cell derived cFbs (hiPSC-cFbs) were used to investigate the potential for reversal of the myofibroblast phenotype using either subculture on soft substrates or TGF-β receptor inhibition. Culture on softer plates (25 or 2 kPa Young's modulus) did not alter proliferation or reduce expression of α-SMA and collagen 1. Similarly, culture of myofibroblasts in the presence of TGF-β inhibitor did not reverse myofibroblasts back to a quiescent phenotype. Chronically activated hiPSC-cFbs also showed attenuated response to TGF-β receptor inhibition and inability to reverse to quiescent fibroblast phenotype. Our data demonstrate substantial loss of TGF-β signalling plasticity as well as a loss of feedback from the surrounding mechanical environment in chronically activated human myofibroblasts

    Early effects of kidney transplantation on the heart - A cardiac magnetic resonance multi-parametric study

    Get PDF
    Increased native myocardial T1 times in chronic kidney disease (CKD) may be due to diffuse interstitial myocardial fibrosis (DIF) or due to interstitial edema/inflammation. Concerns relating to nephrogenic systemic fibrosis with gadolinium-based contrast agents (GBCA) limit their use in end-stage kidney disease (ESKD) to measure extracellular volume (ECV) and characterise myocardial fibrosis. This study aimed to examine stability of myocardial T1 and T2 times before, and within 2 months after kidney transplantation; a time frame when volume status normalises but myocardial remodelling is unlikely to have occurred, and to compare these with ECV using GBCA after transplantation. Twenty-four patients with ESKD underwent serial cardiovascular magnetic resonance imaging, including T1 and T2 mapping. GBCA was administered on follow-up provided eGFR was N30 ml/min/1.73 m2 . Eighteen age- and sex-matched controls were studied at one timepoint. ECV (ECV 28 ± 2% vs. 24 ± 2%, p = 0.001) and T2 times were higher in ESKD compared to controls. After transplantation, septal T1 times increased (MOLLI 985 ms ± 25 vs. 1002 ms ± 30, p = 0.014; ShMOLLI 974 ms ± 39 vs. 992 ms ± 33, p = 0.113), LV volumes reduced (LVEDvol indexed 79 ± 24 vs. 63 ± 20 ml/m2 , p = 0.005) but LV mass was unchanged (LV mass index 89 g/m2 ± 38 to 83 g/m2 ± 23, p = 0.141). T2 times did not change after transplantation. Both ECV and myocardial T1 times are elevated in ESKD, supporting the theory that elevated T1 times are due to DIF, although a contribution from myocardial edema cannot be fully excluded. The lack of any fall in T1 or T2 times after transplantation suggests that myocardial T1 times are a stable measure of DIF in CKD
    • …
    corecore