15 research outputs found

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    WS₂ and MoS₂ thin film gas sensors with high response to NH₃ in air at low temperature

    No full text
    Abstract Transition metal dichalcogenides (TMDs) have received immense research interest in particular for their outstanding electrochemical and optoelectrical properties. Lately, chemical gas sensor applications of TMDs have been recognized as well owing to the low operating temperatures of devices, which is a great advantage over conventional metal oxide based sensors. In this work, we elaborate on the gas sensing properties of WS₂ and MoS₂ thin films made by simple and straightforward thermal sulfurization of sputter deposited metal films on silicon chips. The sensor response to H₂, H₂S, CO and NH₃ analytes in air at 30 °C has been assessed and both MoS₂ and WS₂ were found to have an excellent selectivity to NH₃ with a particularly high sensitivity of 0.10 ± 0.02 ppm⁻Âč at sub-ppm concentrations in the case of WS₂. The sensing behavior is explained on the bases of gas adsorption energies as well as carrier (hole) localization induced by the surface adsorbed moieties having reductive nature

    Portable cyber-physical system for indoor and outdoor gas sensing

    No full text
    Abstract A design, development and testing process for a cyber-physical system capable of versatile gas sensor measurement is described. Two approaches for the system are proposed; a stationary system for calibration and testing in laboratory environments and a portable system with wireless capability. The device utilizes a well-established Arduino microcontroller as well as a Raspberry Pi single board computer. The functionality is realized with C and Python programming languages. The operability is validated by system performance evaluation in the mixture of air and hydrogen gas, using both commercial and experimental Taguchi-type metal oxide semiconductor sensors. The experimental sensors are fabricated by inkjet printing platinum decorated tungsten oxide nanoparticles onto an electrode pattern on a silicon substrate which is then wire bonded to a chip carrier. The measurement platform demonstrated in our paper provides rapid prototyping capabilities for evaluating novel gas sensor materials in realistic measurement scenarios

    Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging

    No full text
    Abstract To attend the growing consumer demand for novel ready-to-eat fresh cut fruits packaging polylactic acid (PLA)-based active packaging was realized. The aim of these packaging is to provide an improved protection and even to extend their shelf-life. PLA-based active packaging was prepared by adding nanoclays and surfactants in its formulation. The evaluation of PLA-nanocomposite packaging was done in comparison to pristine PLA and conventional plastic (polyethylene terephthalate, PET) using fresh-cut melons. Physicochemical properties were investigated by the means of weight loss, visual appearance, pH, colour, and firmness. In addition, microbial profile was tested via microbiological assays. In order to evaluate the environmental impact of PLA-based active packaging compared to commonly used PET, life cycle assessment (LCA) was conducted. In terms of physicochemical and antimicrobial properties, the results clearly showed that the presence of nanoclays and surfactants in the PLA formulations improved their performance, thus contributing to bring the characteristic and behaviour of PLA packages close to those of PET. Furthermore, assessment of life cycle environmental impacts indicated that PLA packaging with nanoclays had the highest environmental performance

    Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring

    No full text
    Abstract In order to reduce food waste and meet the needs of the demanding modern consumer regarding the quality of food items, it is crucial to monitor the supply chain and storage conditions of perishable food products. Considering this scenario, temperature plays an important role on food safety and quality during storage and supply. In this work, a critical temperature indicator (CTI) based on a solvent melting point is developed. Furthermore, the present CTI working principle is improved by the use of microfluidics technology. As final result, a novel and functional CTI-smart sensor which combines irreversible visual color changes and radio frequency identification (RFID) technologies is achieved. Such CTI integrated to a RFID tag provides a unique advantage to monitor the supply chain in real time by the simple use of a RFID reader in strategic points
    corecore