173 research outputs found

    Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity

    Get PDF
    Obesity is associated with increased risk of premature death, morbidity, and mortality from several cardiovascular diseases (CVDs), including stroke, coronary heart disease (CHD), myocardial infarction, and congestive heart failure. However, this is not a straightforward relationship. Although several studies have substantiated that obesity confers an independent and additive risk of all-cause and cardiovascular death, there is significant variability in these associations, with some lean individuals developing diseases and others remaining healthy despite severe obesity, the so-called metabolically healthy obese. Part of this variability has been attributed to the heterogeneity in both the distribution of body fat and the intrinsic properties of adipose tissue depots, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, hormonal control, thermogenic ability, and vascularization. In obesity, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. The adventitial fat layer, also known as perivascular adipose tissue (PVAT), is of major importance. Similar to the visceral adipose tissue, PVAT has a pathophysiological role in CVDs. PVAT influences vascular homeostasis by releasing numerous vasoactive factors, cytokines, and adipokines, which can readily target the underlying smooth muscle cell layers, regulating the vascular tone, distribution of blood flow, as well as angiogenesis, inflammatory processes, and redox status. In this review, we summarize the current knowledge and discuss the role of PVAT within the scope of adipose tissue as a major contributing factor to obesity-associated cardiovascular risk. Relevant clinical studies documenting the relationship between PVAT dysfunction and CVD with a focus on potential mechanisms by which PVAT contributes to obesity-related CVDs are pointed out

    The Role of Uridine Adenosine Tetraphosphate in the Vascular System

    Get PDF
    The endothelium plays a pivotal role in vascular homeostasis, and endothelial dysfunction is a major feature of cardiovascular diseases, such as arterial hypertension, atherosclerosis, and diabetes. Recently, uridine adenosine tetraphosphate (Up4A) has been identified as a novel and potent endothelium-derived contracting factor (EDCF). Up4A structurally contains both purine and pyrimidine moieties, which activate purinergic receptors. There is an accumulating body of evidence to show that Up4A modulates vascular function by actions on endothelial and smooth muscle cells. In this paper, we discuss the effects of Up4A on vascular function and a potential role for Up4A in cardiovascular diseases

    Differential Modulation of Nitric Oxide Synthases in Aging: Therapeutic Opportunities

    Get PDF
    Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO) bioavailability and altered vascular expression and activity of NO synthase (NOS) enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS)-derived NO, while increased inducible NOS (iNOS) expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS) also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen), statins, resveratrol, and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed

    Linking the beneficial effects of current therapeutic approaches in diabetes to the vascular endothelin system

    Get PDF
    The rising epidemic of diabetes worldwide is of significant concern. Although the ultimate objective is to prevent the development and find a cure for the disease, prevention and treatment of diabetic complications is very important. Vascular complications in diabetes, or diabetic vasculopathy, include macro- and microvascular dysfunction and represent the principal cause of morbidity and mortality in diabetic patients. Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vasculopathy. Endothelin-1 (ET-1), an endothelial cell-derived peptide, is a potent vasoconstrictor with mitogenic, pro-oxidative and pro-inflammatory properties that are particularly relevant to the pathophysiology of diabetic vasculopathy. Overproduction of ET-1 is reported in patients and animal models of diabetes and the functional effects of ET-1 and its receptors are also greatly altered in diabetic conditions. The current therapeutic approaches in diabetes include glucose lowering, sensitization to insulin, reduction of fatty acids and vasculoprotective therapies. However, whether and how these therapeutic approaches affect the ET-1 system remain poorly understood. Accordingly, in the present review, we will focus on experimental and clinical evidence that indicates a role for ET-1 in diabetic vasculopathy and on the effects of current therapeutic approaches in diabetes on the vascular ET-1 system

    Testosterone and Vascular Function in Aging

    Get PDF
    Androgen receptors are widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Through classic cytosolic androgen receptors or membrane receptors, testosterone induces genomic and non-genomic effects, respectively. Testosterone interferes with the vascular function by increasing the production of pro-inflammatory cytokines and arterial thickness. Experimental evidence indicates that sex steroid hormones, such as testosterone modulate the synthesis and bioavailability of NO and, consequently, endothelial function, which is key for a healthy vasculature. Of interest, aging itself is accompanied by endothelial and vascular smooth muscle dysfunction. Aging-associated decline of testosterone levels is accompanied by age-related diseases, such as metabolic and cardiovascular diseases, indicating that very low levels of androgens may contribute to cardiovascular dysfunction observed in these age-related disorders or, in other words, that testosterone may have beneficial effects in the cardiovascular system. However, testosterone seems to play a negative role in the severity of renal disease. In this mini-review, we briefly comment on the interplay between aging and testosterone levels, the vascular actions of testosterone and its implications for vascular aging. Renal effects of testosterone and the use of testosterone to prevent vascular dysfunction in elderly are also addressed

    Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

    Get PDF
    Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db)] mice, a model of DM2, and their counterpart controls [LepRdb/LepR+, (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser1177) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) β subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes

    P2X7 receptor activation amplifies lipopolysaccharideinduced vascular hyporeactivity via interleukin-1 beta release

    Get PDF
    ABSTRACT Lipopolysaccharide (LPS) stimulates cytoplasmic accumulation of pro-interleukin (IL)-1␤. Activation of P2X 7 receptors stimulates conversion of pro-IL-1␤ into mature IL-1␤, which is then secreted. Because both LPS (in vivo) and IL-1␤ (in vitro) decrease vascular reactivity to contractile agents, we hypothesized the following: 1) P2X 7 receptor activation contributes to LPS-induced vascular hyporeactivity, and 2) IL-1␤ mediates this change. Thoracic aortas were obtained from 12-week-old male C57BL/6 mice. The aortic rings were incubated for 24 h in Dulbecco's modified Eagle's medium, LPS, benzoylbenzoyl-ATP (BzATP; P2X 7 receptor agonist), LPS plus BzATP, oxidized ATP (oATP; P2X 7 receptor antagonist), or oATP plus LPS plus BzATP. After the treatment, the rings were either mounted in a myograph for evaluation of contractile activity or homogenized for IL-1␤ and inducible nitric-oxide synthase (iNOS) protein measurement. In endothelium-intact aortic rings, phenylephrine (PE)-induced contractions were not altered by incubation with LPS or BzATP, but they significantly decreased in aortic rings incubated with LPS plus BzATP. Treatment with oATP or IL-1ra (IL-1␤ receptor antagonist) reversed LPS plus BzATP-induced hyporeactivity to PE. In the presence of N G -nitro-L-arginine methyl ester or N- ([3-(aminomethyl)phenyl]methyl)ethanimidamide (selective iNOS inhibitor), the vascular hyporeactivity induced by LPS plus BzATP on PE responses was not observed. BzATP augmented LPS-induced IL-1␤ release and iNOS protein expression, and these effects were also inhibited by oATP. Moreover, incubation of endothelium-intact aortic rings with IL-1␤ induced iNOS protein expression. Thus, activation of P2X 7 receptor amplifies LPS-induced hyporeactivity in mouse endothelium-intact aorta, which is associated with IL-1␤-mediated release of nitric oxide by iNOS

    Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) induces vascular dysfunction via production of superoxide anion/reactive oxygen species

    Get PDF
    Overproduction of superoxide anion (•O2-) and O-linked β-N-acetylglucosamine (O-GlcNAc)-modification in the vascular system are contributors to endothelial dysfunction. This study tested the hypothesis that increased levels of O-GlcNAc-modified proteins contribute to •O2- production via activation of NADPH oxidase, resulting in impaired vasodilation. Rat aortic segments and vascular smooth muscle cell (VSMCs) were incubated with vehicle (methanol) or PUGNAc (100 µM). PUGNAc produced a time-dependent increase in O-GlcNAc levels in VSMC and decreased endothelium-dependent relaxation, which was prevented by apocynin and Tiron, suggesting that •O2- contributes to endothelial dysfunction under augmented O-GlcNAc levels. Aortic segments incubated with PUGNAc also exhibited increased levels of ROS, assessed by dihydroethidium fluorescence, and augmented •O2- production, determined by lucigenin-enhanced chemiluminescence. Additionally, PUGNAc treatment increased Nox1 and Nox4 protein expression in aorta and VSMCs. Translocation of p47phox subunit from the cytosol to the membrane was greater in aortas incubated with PUGNAc. VSMCs displayed increased p22phox protein expression after PUGNAc incubation, suggesting that NADPH oxidase is activated in conditions where O-GlcNAc protein levels are increased. In conclusion, O-GlcNAc levels reduce endothelium-dependent relaxation by overproduction of •O2- via activation of NADPH oxidase. This may represent an additional mechanism by which augmented O-GlcNAc levels impair vascular function
    corecore