536 research outputs found

    pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita

    Get PDF
    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.ArticleMYCORRHIZA. 25(1):55-60 (2015)journal articl

    Rolling behavior of a micro-cylinder in adhesional contact

    Get PDF
    Understanding the rolling behavior of a micro-object is essential to establish the techniques of micro-manipulation and micro-assembly by mechanical means. Using a combined theoretical/computational approach, we studied the critical conditions of rolling resistance of an elastic cylindrical micro-object in adhesional contact with a rigid surface. Closed-form dimensionless expressions for the critical rolling moment, the initial rolling contact area, and the initial rolling angle were extracted after a systematic parametric study using finite element method (FEM) simulations. The total energy of this system is defined as the sum of three terms: the elastic energy stored in the deformed micro-cylinder, the interfacial energy within the contact area, and the mechanical potential energy that depends on the external moment applied to the cylindrical micro-object. A careful examination of the energy balance of the system surprisingly revealed that the rolling resistance per unit cylindrical length can be simply expressed by “work of adhesion times cylindrical radius” independent of the Young’s modulus. In addition, extending a linear elastic fracture mechanics based approach in the literature, we obtained the exact closed-form asymptotic solutions for the critical conditions for initial rolling; these asymptotic solutions were found in excellent agreement with the full-field FEM results.Singapore-MIT Allianc

    36M-pixel synchrotron radiation micro-CT for whole secondary pulmonary lobule visualization from a large human lung specimen

    Get PDF
    A micro-CT system was developed using a 36M-pixel digital single-lens reflex camera as a cost-effective mode for large human lung specimen imaging. Scientific grade cameras used for biomedical x-ray imaging are much more expensive than consumer-grade cameras. During the past decade, advances in image sensor technology for consumer appliances have spurred the development of biomedical x-ray imaging systems using commercial digital single-lens reflex cameras fitted with high megapixel CMOS image sensors. This micro-CT system is highly specialized for visualizing whole secondary pulmonary lobules in a large human lung specimen. The secondary pulmonary lobule, a fundamental unit of the lung structure, reproduces the lung in miniature. The lung specimen is set in an acrylic cylindrical case of 36 mm diameter and 40 mm height. A field of view (FOV) of the micro-CT is 40.6 mm wide × 15.1 mm high with 3.07 μm pixel size using offset CT scanning for enlargement of the FOV. We constructed a 13,220 × 13,220 × 4912 voxel image with 3.07 μm isotropic voxel size for three-dimensional visualization of the whole secondary pulmonary lobule. Furthermore, synchrotron radiation has proved to be a powerful high-resolution imaging tool. This micro-CT system using a single-lens reflex camera and synchrotron radiation provides practical benefits of high-resolution and wide-field performance, but at low cost

    The Development Status of the First Demonstration Satellite of Our Commercial Small Synthetic Aperture Radar Satellite Constellation

    Get PDF
    Expectations for SAR (Synthetic Aperture Radar) satellites that can observe a target area through clouds and during nighttime are emerging, especially in Asia where high cloud cover rate prevent from the satellite monitoring with optical sensors. We are now developing a small SAR satellite based on technologies of ImPACT (Impulsing PAradigm Change through disruptive Technologies) program. This program aims to develop a responsive earth observation system with the small SAR satellite, originally target for disaster monitoring. We will build a constellation of the small SAR satellites to realize short term revisits, shorter than one day to take advantage of SAR sensor that can acquire data regardless of weather and time in a day. We expect the constellation expands needs of the SAR data to business and private decision making, and develop a market for commercial use. We have almost completed the development of mission FM components of the first demo satellite. The bus system is under EM testing and FM procurements. We will launch the first demo satellite in Q1 of 2020. We are already preparing to build the second satellite and will make six satellite constellation until 2021. Our final goal is to build a constellation of 25 satellites
    corecore