35 research outputs found
The AMS-02 RICH Imager Prototype - In-Beam Tests with 20 GeV/c per Nucleon Ions -
A prototype of the AMS Cherenkov imager (RICH) has been tested at CERN by
means of a low intensity 20 GeV/c per nucleon ion beam obtained by
fragmentation of a primary beam of Pb ions. Data have been collected with a
single beam setting, over the range of nuclear charges 2<Z<~45 in various beam
conditions and using different radiators. The charge Z and velocity beta
resolutions have been measured.Comment: 4 pages, contribution to the ICRC 200
The AMS-RICH velocity and charge reconstruction
The AMS detector, to be installed on the International Space Station,
includes a Ring Imaging Cerenkov detector with two different radiators, silica
aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to
provide very precise measurements of velocity and electric charge in a wide
range of cosmic nuclei energies and atomic numbers. The detector geometry, in
particular the presence of a reflector for acceptance purposes, leads to
complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The
results of different reconstruction methods applied to test beam data as well
as to simulated samples are presented. To ensure nominal performances
throughout the flight, several detector parameters have to be carefully
monitored. The algorithms developed to fulfill these requirements are
presented. The velocity and charge measurements provided by the RICH detector
endow the AMS spectrometer with precise particle identification capabilities in
a wide energy range. The expected performances on light isotope separation are
discussed.Comment: Contribution to the ICRC07, Merida, Mexico (2007); Presenter: F.
Bara
The RICH detector of the AMS-02 experiment: status and physics prospects
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be
installed on the International Space Station (ISS) for at least 3 years, is a
detector designed to measure charged cosmic ray spectra with energies up to the
TeV region and with high energy photon detection capability up to a few hundred
GeV. It is equipped with several subsystems, one of which is a proximity
focusing RICH detector with a dual radiator (aerogel+NaF) that provides
reliable measurements for particle velocity and charge. The assembly and
testing of the AMS RICH is currently being finished and the full AMS detector
is expected to be ready by the end of 2008. The RICH detector of AMS-02 is
presented. Physics prospects are briefly discussed.Comment: 5 pages. Contribution to the 10th ICATPP Conference on Astroparticle,
Particle, Space Physics, Detectors and Medical Physics Applications (Como
2007). Presenter: Rui Pereir
The Ring Imaging Cherenkov detector (RICH) of the AMS experiment
The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the
International Space Station (ISS) will be equipped with a proximity focusing
Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and
velocity of the charged cosmic particles. A RICH prototype consisting of 96
photomultiplier units, including a piece of the conical reflector, was built
and its performance evaluated with ion beam data. Preliminary results of the
in-beam tests performed with ion fragments resulting from collisions of a 158
GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported.
The collected data included tests to the final front-end electronics and to
different aerogel radiators. Cherenkov rings for a large range of charged
nuclei and with reflected photons were observed. The data analysis confirms the
design goals. Charge separation up to Fe and velocity resolution of the order
of 0.1% for singly charged particles are obtained.Comment: 29th International Conference on Cosmic Rays (Pune, India
A search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors
We report on a search for low-energy (E < 20 keV) WIMP-induced nuclear
recoils using data collected in 2009 - 2010 by EDELWEISS from four germanium
detectors equipped with thermal sensors and an electrode design (ID) which
allows to efficiently reject several sources of background. The data indicate
no evidence for an exponential distribution of low-energy nuclear recoils that
could be attributed to WIMP elastic scattering after an exposure of 113 kg.d.
For WIMPs of mass 10 GeV, the observation of one event in the WIMP search
region results in a 90% CL limit of 1.0x10^-5 pb on the spin-independent
WIMP-nucleon scattering cross-section, which constrains the parameter space
associated with the findings reported by the CoGeNT, DAMA and CRESST
experiments.Comment: PRD rapid communication accepte
Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes
The EDELWEISS-II collaboration has completed a direct search for WIMP dark
matter with an array of ten 400-g cryogenic germanium detectors in operation at
the Laboratoire Souterrain de Modane. The combined use of thermal phonon
sensors and charge collection electrodes with an interleaved geometry enables
the efficient rejection of gamma-induced radioactivity as well as near-surface
interactions. A total effective exposure of 384 kg.d has been achieved, mostly
coming from fourteen months of continuous operation. Five nuclear recoil
candidates are observed above 20 keV, while the estimated background is 3.0
events. The result is interpreted in terms of limits on the cross-section of
spin-independent interactions of WIMPs and nucleons. A cross-section of
4.4x10^-8 pb is excluded at 90%CL for a WIMP mass of 85 GeV. New constraints
are also set on models where the WIMP-nucleon scattering is inelastic.Comment: 23 pages, 5 figures; matches published versio
Background studies for the EDELWEISS dark matter experiment
The EDELWEISS-II collaboration has completed a direct search for WIMP dark
matter using cryogenic Ge detectors (400 g each) and 384 kgdays of
effective exposure. A cross-section of pb is excluded at
90% C.L. for a WIMP mass of 85 GeV. The next phase, EDELWEISS-III, aims to
probe spin-independent WIMP-nucleon cross-sections down to a few
pb. We present here the study of gamma and neutron background
coming from radioactive decays in the set-up and shielding materials. We have
carried out Monte Carlo simulations for the completed EDELWEISS-II setup with
GEANT4 and normalised the expected background rates to the measured
radioactivity levels (or their upper limits) of all materials and components.
The expected gamma-ray event rate in EDELWEISS-II at 20-200 keV agrees with the
observed rate of 82 events/kg/day within the uncertainties in the measured
concentrations. The calculated neutron rate from radioactivity of 1.0-3.1
events (90% C.L.) at 20-200 keV in the EDELWEISS-II data together with the
expected upper limit on the misidentified gamma-ray events (), surface
betas (), and muon-induced neutrons (), do not contradict 5
observed events in nuclear recoil band. We have then extended the simulation
framework to the EDELWEISS-III configuration with 800 g crystals, better
material purity and additional neutron shielding inside the cryostat. The
gamma-ray and neutron backgrounds in 24 kg fiducial mass of EDELWEISS-III have
been calculated as 14-44 events/kg/day and 0.7-1.4 events per year,
respectively. The results of the background studies performed in the present
work have helped to select better purity components and improve shielding in
EDELWEISS-III to further reduce the expected rate of background events in the
next phase of the experiment.Comment: 15 pages, 9 figures, to be published in Astroparticle Physic