7 research outputs found

    Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval

    No full text
    A central idea in plasmonics and metamaterials is to interpret scattering resonances as resulting from hybridization of electric dipoles. Recent developments in metamaterials as well as in plasmonic Fano systems have further included magnetic dipoles and electric quadrupoles in this reasoning. We derive a method to retrieve dipole and quadrupole polarizability tensors of nano scatterers from full-wave simulations, which allows us to underpin this intuitive reasoning by quantifying the existent modes and their strengths in complex nano antennas. By application to a dolmen plasmon structure, we show how the retrieval sheds new light on plasmon induced transparency. Further, we show how to implement radiative corrections to a dipole–quadrupole model applicable when scatterers are placed near a surface, sphere, or stratified medium, similar to the known correction of dipole polarizabilities by the local density of optical states. We demonstrate how this model allows us to interpret near field excitation data taken on plasmon antennas deposited on a high-index substrate

    Supplement 1: Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles

    No full text
    Supplemental document Originally published in Optica on 20 January 2016 (optica-3-1-93

    Angle-Resolved Cathodoluminescence Imaging Polarimetry

    No full text
    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the polarization was not fully determined. Here we demonstrate a technique to access the full polarization state of the cathodoluminescence emission, that is the Stokes parameters as a function of the emission angle. Using this technique, we measure the emission of metallic bullseye nanostructures and show that the handedness of the structure as well as nanoscale changes in excitation position induce large changes in polarization ellipticity and helicity. Furthermore, by exploiting the ability of polarimetry to distinguish polarized from unpolarized light, we quantify the contributions of different types of coherent and incoherent radiation to the emission of a gold surface, silicon and gallium arsenide bulk semiconductors. This technique paves the way for in-depth analysis of the emission mechanisms of nanostructured devices as well as macroscopic media

    Nanoscale Relative Emission Efficiency Mapping Using Cathodoluminescence g<sup>(2)</sup> Imaging

    No full text
    Cathodoluminescence (CL) imaging spectroscopy provides two-dimensional optical excitation images of photonic nanostructures with a deep-subwavelength spatial resolution. So far, CL imaging was unable to provide a direct measurement of the excitation and emission probabilities of photonic nanostructures in a spatially resolved manner. Here, we demonstrate that by mapping the cathodoluminescence autocorrelation function g<sup>(2)</sup> together with the CL spectral distribution the excitation and emission rates can be disentangled at every excitation position. We use InGaN/GaN quantum wells in GaN nanowires with diameters in the range 200–500 nm as a model system to test our new g<sup>(2)</sup> mapping methodology and find characteristic differences in excitation and emission rates both between wires and within wires. Strong differences in the average CL intensity between the wires are the result of differences in the emission efficiencies. At the highest spatial resolution, intensity variations observed within wires are the result of excitation rates that vary with the nanoscale geometry of the structures. The fact that strong spatial variations observed in the CL intensity are not only uniquely linked to variations in emission efficiency but also linked to excitation efficiency has profound implications for the interpretation of the CL data for nanostructured geometries in general

    The Planar Parabolic Optical Antenna

    No full text
    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies

    Gallium Plasmonics: Deep Subwavelength Spectroscopic Imaging of Single and Interacting Gallium Nanoparticles

    No full text
    Gallium has recently been demonstrated as a phase-change plasmonic material offering UV tunability, facile synthesis, and a remarkable stability due to its thin, self-terminating native oxide. However, the dense irregular nanoparticle (NP) ensembles fabricated by molecular-beam epitaxy make optical measurements of individual particles challenging. Here we employ hyperspectral cathodoluminescence (CL) microscopy to characterize the response of single Ga NPs of various sizes within an irregular ensemble by spatially and spectrally resolving both in-plane and out-of-plane plasmonic modes. These modes, which include hybridized dipolar and higher-order terms due to phase retardation and substrate interactions, are correlated with finite difference time domain (FDTD) electrodynamics calculations that consider the Ga NP contact angle, substrate, and native Ga/Si surface oxidation. This study experimentally confirms previous theoretical predictions of plasmonic size-tunability in single Ga NPs and demonstrates that the plasmonic modes of interacting Ga nanoparticles can hybridize to produce strong hot spots in the ultraviolet. The controlled, robust UV plasmonic resonances of gallium nanoparticles are applicable to energy- and phase-specific applications such as optical memory, environmental remediation, and simultaneous fluorescence and surface-enhanced Raman spectroscopies

    Nanoscale Spatial Coherent Control over the Modal Excitation of a Coupled Plasmonic Resonator System

    No full text
    We demonstrate coherent control over the optical response of a coupled plasmonic resonator by high-energy electron beam excitation. We spatially control the position of an electron beam on a gold dolmen and record the cathodoluminescence and electron energy loss spectra. By selective coherent excitation of the dolmen elements in the near field, we are able to manipulate modal amplitudes of bonding and antibonding eigenmodes. We employ a combination of CL and EELS to gain detailed insight in the power dissipation of these modes at the nanoscale as CL selectively probes the radiative response and EELS probes the combined effect of Ohmic dissipation and radiation
    corecore