35 research outputs found

    lidR : an R package for analysis of Airborne Laser Scanning (ALS) data

    Get PDF
    Airborne laser scanning (ALS) is a remote sensing technology known for its applicability in natural resources management. By quantifying the three-dimensional structure of vegetation and underlying terrain using laser technology, ALS has been used extensively for enhancing geospatial knowledge in the fields of forestry and ecology. Structural descriptions of vegetation provide a means of estimating a range of ecologically pertinent attributes, such as height, volume, and above-ground biomass. The efficient processing of large, often technically complex datasets requires dedicated algorithms and software. The continued promise of ALS as a tool for improving ecological understanding is often dependent on user-created tools, methods, and approaches. Due to the proliferation of ALS among academic, governmental, and private-sector communities, paired with requirements to address a growing demand for open and accessible data, the ALS community is recognising the importance of free and open-source software (FOSS) and the importance of user-defined workflows. Herein, we describe the philosophy behind the development of the lidR package. Implemented in the R environment with a C/C++ backend, lidR is free, open-source and cross-platform software created to enable simple and creative processing workflows for forestry and ecology communities using ALS data. We review current algorithms used by the research community, and in doing so raise awareness of current successes and challenges associated with parameterisation and common implementation approaches. Through a detailed description of the package, we address the key considerations and the design philosophy that enables users to implement user-defined tools. We also discuss algorithm choices that make the package representative of the ‘state-of-the-art' and we highlight some internal limitations through examples of processing time discrepancies. We conclude that the development of applications like lidR are of fundamental importance for developing transparent, flexible and open ALS tools to ensure not only reproducible workflows, but also to offer researchers the creative space required for the progress and development of the discipline

    sgsR: a structurally guided sampling toolbox for LiDAR-based forest inventories

    Get PDF
    Establishing field inventories can be labor intensive, logistically challenging and expensive. Optimizing a sample to derive accurate forest attribute predictions is a key management-level inventory objective. Traditional sampling designs involving pre-defined, interpreted strata could result in poor selection of within-strata sampling intensities, leading to inaccurate estimates of forest structural variables. The use of airborne laser scanning (ALS) data as an applied forest inventory tool continues to improve understanding of the composition and spatial distribution of vegetation structure across forested landscapes. The increased availability of wall-to-wall ALS data is promoting the concept of structurally guided sampling (SGS), where ALS metrics are used as an auxiliary data source driving stratification and sampling within management-level forest inventories. In this manuscript, we present an open-source R package named sgsR that provides a robust toolbox for implementing various SGS approaches. The goal of this package is to provide a toolkit to facilitate better optimized allocation of sample units and sample size, as well as to assess and augment existing plot networks by accounting for current forest structural conditions. Here, we first provide justification for SGS approaches and the creation of the sgsR toolbox. We then briefly describe key functions and workflows the package offers and provide two reproducible examples. Avenues to implement SGS protocols according to auxiliary data needs are presented

    Enhancing Forest Growth and Yield Predictions with Airborne Laser Scanning Data: Increasing Spatial Detail and Optimizing Yield Curve Selection through Template Matching

    No full text
    Accurate information on both the current stock and future growth and yield of forest resources is critical for sustainable forest management. We demonstrate a novel approach to utilizing airborne laser scanning (ALS)-derived forest stand attributes to determine future growth and yield of six attributes at a sub-stand (25 m grid cell) level of detail: dominant height (HMAX), Lorey’s height (HL), quadratic mean diameter (QMD), basal area (BA), whole stem volume (V), and trees per hectare (TPH). The approach is designed to find the most appropriate matching yield curve and project the attributes to the age of 80 years. Comparisons to conventional plot-level projections resulted in relative mean differences of 13.4% (HMAX), −27.1% (HL), 18.8% (QMD), 12.0% (BA), 18.6% (V), and −17.5% (TPH). The respective relative root mean squared difference values were: 31.1%, 38.4%, 19.8%, 19.8%, 21.8%, and 38.4%. Differences were driven mostly by stand-level age and site index. The uncertainty of cell-level yield curve assignment was used to refine stand-level summaries. The novel contribution of this study is in the application of growth and yield models at the cell level, combined with the use of ALS-derived attributes to optimize yield curve selection via template matching

    Digital Terrestrial Photogrammetry to Enhance Field-Based Forest Inventory across Stand Conditions

    No full text
    Forest inventories in uncertain future economic and environmental conditions require the development of cost-effective measurement techniques to provide robust and accurate information on forests across regional and global scales. Digital terrestrial photogrammetry (DTP) can be used to detect and measure trees on sample plots. In this study, a method was developed which used spherical images taken strategically within plots, and under varying acquisition conditions, to derive forest inventory attributes. Using a set of 102 photos on 400 m2 circular plots achieved a mean detection rate of 72.3% and estimated diameter to an RMSE of 19.0%. This study also explored the sensitivity of detection and estimation accuracy to different field and acquisition conditions. Detection of individual trees was significantly influenced by the tree size and species (p < 0.05 in a regression analysis), while plot-level detection was influenced by size and stem density. Tree size and the distance to the camera significantly influenced the accuracy of estimated attributes. These results are comparable to those of other DTP and terrestrial laser scanning studies in similar forest types while using fewer photos and less time, demonstrating the value of cost-effective methods for DTP estimation of forest attributes

    FOSTER-An R package for forest structure extrapolation.

    No full text
    The uptake of technologies such as airborne laser scanning (ALS) and more recently digital aerial photogrammetry (DAP) enable the characterization of 3-dimensional (3D) forest structure. These forest structural attributes are widely applied in the development of modern enhanced forest inventories. As an alternative to extensive ALS or DAP based forest inventories, regional forest attribute maps can be built from relationships between ALS or DAP and wall-to-wall satellite data products. To date, a number of different approaches exist, with varying code implementations using different programming environments and tailored to specific needs. With the motivation for open, simple and modern software, we present FOSTER (Forest Structure Extrapolation in R), a versatile and computationally efficient framework for modeling and imputation of 3D forest attributes. FOSTER derives spectral trends in remote sensing time series, implements a structurally guided sampling approach to sample these often spatially auto correlated datasets, to then allow a modelling approach (currently k-NN imputation) to extrapolate these 3D forest structure measures. The k-NN imputation approach that FOSTER implements has a number of benefits over conventional regression based approaches including lower bias and reduced over fitting. This paper provides an overview of the general framework followed by a demonstration of the performance and outputs of FOSTER. Two ALS-derived variables, the 95th percentile of first returns height (elev_p95) and canopy cover above mean height (cover), were imputed over a research forest in British Columbia, Canada with relative RMSE of 18.5% and 11.4% and relative bias of -0.6% and 1.4% respectively. The processing sequence developed within FOSTER represents an innovative and versatile framework that should be useful to researchers and managers alike looking to make forest management decisions over entire forest estates

    Framework for near real-time forest inventory using multi source remote sensing data

    No full text
    Forestry inventory update is a critical component of sustainable forest management, requiring both the spatially explicit identification of forest cover change and integration of sampled or modelled components like growth and regeneration. Contemporary inventory data demands are shifting, with an increased focus on accurate attribute estimation via the integration of advanced remote sensing data such as airborne laser scanning (ALS). Key challenges remain, however, on how to maintain and update these next-generation inventories as they age. Of particular interest is the identification of remotely sensed data that can be applied cost effectively, as well as establishing frameworks to integrate these data to update information on forest condition, predict future growth and yield, and integrate information that can guide forest management or silvicultural decisions such as thinning and harvesting prescriptions. The purpose of this article is to develop a conceptual framework for forestry inventory update, which is also known as the establishment of a ‘living inventory’. The proposed framework contains the critical components of an inventory update including inventory and growth monitoring, change detection and error propagation. In the framework, we build on existing applications of ALS-derived enhanced inventories and integrate them with data from satellite constellations of free and open, analysis-ready moderate spatial resolution imagery. Based on a review of the current literature, our approach fits trajectories to chronosequences of pixel-level spectral index values to detect change. When stand-replacing change is detected, corresponding values of cell-level inventory attributes are reset and re-established based on an assigned growth curve. In the case of non–stand-replacing disturbances, cell estimates are modified based on predictive models developed between the degree of observed spectral change and relative changes in the inventory attributes. We propose that additional fine-scale data can be collected over the disturbed area, from sources such as CubeSats or remotely piloted airborne systems, and attributes updated based on these data sources. Cells not identified as undergoing change are assumed unchanged with cell-level growth curves used to increment inventory attributes. We conclude by discussing the impact of error propagation on the prediction of forest inventory attributes through the proposed near real-time framework, computing needs and integration of other available remote sensing data

    Enriching ALS-Derived Area-Based Estimates of Volume through Tree-Level Downscaling

    No full text
    Information on individual tree attributes is important for sustainable management of forest stands. Airborne Laser Scanning (ALS) point clouds are an excellent source of information for predicting a range of forest stand attributes, with plot and single tree volume being among the most important. Two approaches exist for estimating volume: area-based approach (ABA) and individual tree detection (ITD). The ABA is now routinely applied in operational forestry applications, and results in generalized plot- or stand-level attribute predictions. Alternatively, ITD-based estimates provide detailed information for individual trees, but are typically biased due to challenges associated with individual tree detection. In this study, we applied an ABA to estimate tree counts and individual tree volumes by downscaling plot-level predictions of total volume derived using ALS data in a highly productive and complex coastal temperate forest environment in British Columbia, Canada, characterized by large volumes and multi-species and multi-age stand structures. To do so, a two-parameter Weibull probability density function (PDF) was used to describe the within-plot tree volume distribution. The ABA approach was then used to model the total plot volume and the two Weibull PDF parameters. Next, the parameters were used to calculate mean tree volume and derive the number of trees and the individual tree volume distribution. Tree count estimates were minimally biased with RMSE of 149 trees·ha−¹ or 24.4%. The volume distributions showed good agreement with reference data (mean Reynold’s error index = 71.7). We conclude that the approach was suitable for enriching ABA-derived forest stand attributes in the majority of the studied forest stands; however the accuracy was lower in multi-layered stands that had a multimodal individual tree volume distribution.Forestry, Faculty ofNon UBCReviewedFacult

    Enhancing Forest Growth and Yield Predictions with Airborne Laser Scanning Data: Increasing Spatial Detail and Optimizing Yield Curve Selection through Template Matching

    No full text
    Accurate information on both the current stock and future growth and yield of forest resources is critical for sustainable forest management. We demonstrate a novel approach to utilizing airborne laser scanning (ALS)-derived forest stand attributes to determine future growth and yield of six attributes at a sub-stand (25 m grid cell) level of detail: dominant height (HMAX), Lorey’s height (HL), quadratic mean diameter (QMD), basal area (BA), whole stem volume (V), and trees per hectare (TPH). The approach is designed to find the most appropriate matching yield curve and project the attributes to the age of 80 years. Comparisons to conventional plot-level projections resulted in relative mean differences of 13.4% (HMAX), −27.1% (HL), 18.8% (QMD), 12.0% (BA), 18.6% (V), and −17.5% (TPH). The respective relative root mean squared difference values were: 31.1%, 38.4%, 19.8%, 19.8%, 21.8%, and 38.4%. Differences were driven mostly by stand-level age and site index. The uncertainty of cell-level yield curve assignment was used to refine stand-level summaries. The novel contribution of this study is in the application of growth and yield models at the cell level, combined with the use of ALS-derived attributes to optimize yield curve selection via template matching.Forestry, Faculty ofNon UBCReviewedFacult
    corecore