2 research outputs found

    Autophagy-mediated regulation of phytohormone metabolism during rice anther development

    No full text
    <p>Autophagy has recently been shown to be required for postmeiotic anther development including anther dehiscence, programmed cell death-mediated degradation of the tapetum and pollen maturation in rice. Several phytohormones are known to play essential roles during male reproductive development including pollen maturation. However, the relationship between phytohormone metabolism and autophagy in plant reproductive development is unknown. We here comprehensively analyzed the effect of autophagy disruption on phytohormone contents in rice anthers at the flowering stage, and found that endogenous levels of active-forms of gibberellins (GAs) and cytokinin, trans-zeatin, were significantly lower in the autophagy-defective mutant, Os<i>atg7–1</i>, than in the wild type. Treatment with GA<sub>4</sub> partially recovered maturation of the mutant pollens, but did not recover the limited anther dehiscence as well as sterility phenotype. These results suggest that autophagy affects metabolism and endogenous levels of GAs and cytokinin in rice anthers. Reduction in bioactive GAs in the autophagy-deficient mutant may partially explain the defects in pollen maturation of the autophagy-deficient mutant, but tapetal autophagy also plays other specific roles in fertilization.</p

    OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development

    No full text
    <div><p>In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional <i>OsATG7</i> (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.</p></div
    corecore