65 research outputs found
Lizards and LINEs: Selection and Demography Affect the Fate of L1 Retrotransposons in the Genome of the Green Anole (Anolis carolinensis)
Autonomous retrotransposons lacking long terminal repeats (LTR) account for much of the variation in genome size and structure among vertebrates. Mammalian genomes contain hundreds of thousands of non-LTR retrotransposon copies, mostly resulting from the amplification of a single clade known as L1. The genomes of teleost fish and squamate reptiles contain a much more diverse array of non-LTR retrotransposon families, whereas copy number is relatively low. The majority of non-LTR retrotransposon insertions in nonmammalian vertebrates also appear to be very recent, suggesting strong purifying selection limits the accumulation of non-LTR retrotransposon copies. It is however unclear whether this turnover model, originally proposed in Drosophila, applies to nonmammalian vertebrates. Here, we studied the population dynamics of L1 in the green anole lizard (Anolis carolinensis). We found that although most L1 elements are recent in this genome, truncated insertions accumulate readily, and many are fixed at both the population and species level. In contrast, full-length L1 insertions are found at lower population frequencies, suggesting that the turnover model only applies to longer L1 elements in Anolis. We also found that full-length L1 inserts are more likely to be fixed in populations of small effective size, suggesting that the strength of purifying selection against deleterious alleles is highly dependent on host demographic history. Similar mechanisms seem to be controlling the fate of non-LTR retrotransposons in both Anolis and teleostean fish, which suggests that mammals have considerably diverged from the ancestral vertebrate in terms of how they interact with their intragenomic parasites
Universal baleen whale microsatellite panel for individual identification and power to detect parentage
Highly polymorphic single tandem repeat loci (STR, also known as microsatellite loci) remain a familiar, cost efficient class of markers for genetic analyses in ecology, behavior and conservation. We characterize a new universal set of ten STR loci (from 28 potential candidate loci) in seven baleen whale species, which are optimized for PCR amplification in two multiplex reactions along with a Y chromosome marker for sex determination. The optimized, universal set of STR loci provides an ideal starting point for new studies in baleen whales aimed at individual-based and population genetic studies, and facilitates data sharing among research groups. Data from the new STR loci were combined with genotypes from other published STR loci to assess the power to assign parentage (paternity) using exclusion in four species: fin whales, humpback whales, blue whales and bowhead whales. We argue that parentage studies should present a power analysis to demonstrate that the specific data are sufficiently informative to assign parentage with statistical rigor
Chromosome-scale genome assembly of the brown anole (Anolis sagrei), an emerging model species
Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei – a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei
Baleen whale microsatellite panel for individual identification and parentage assignment in Mysticeti
Highly polymorphic single tandem repeat loci (STR, also known as microsatellite loci) remain a familiar, cost efficient class of genetic markers in genetic studies in ecology, behavior and conservation. Here we characterize a new, universal set of ten STR loci in seven species of baleen whales, optimized for PCR amplification in two multiplex reactions along with a Y chromosome marker for sex determination. The optimized, universal set of STR loci provides a convenient starting point for new genetic studies in baleen whales aimed at identifying individuals and populations. Data from the new STR loci were combined with genotypes from previously published STR loci to assess the power to assign parentage using paternity exclusion in four species: fin whale (Balaenoptera physalus), humpback whale (Megaptera novaeangliae), blue whale (B. musculus) and bowhead whale (Balaena mysticetus). Our results suggest that parentage studies should always be accompanied by a power analysis in order to ascertain that each individual specific study is based upon data with sufficient power to assign parentage with statistical rigor
Baleen whale microsatellite panel for individual identification and parentage assignment in Mysticeti
DATA AVAILABILITY : Data and scripts are available in Zenodo https://zenodo.org/doi/10.5281/zenodo.10948827Highly polymorphic single tandem repeat loci (STR, also known as microsatellite loci) remain a familiar, cost efficient class of genetic markers in genetic studies in ecology, behavior and conservation. Here we characterize a new, universal set of ten STR loci in seven species of baleen whales, optimized for PCR amplification in two multiplex reactions along with a Y chromosome marker for sex determination. The optimized, universal set of STR loci provides a convenient starting point for new genetic studies in baleen whales aimed at identifying individuals and populations. Data from the new STR loci were combined with genotypes from previously published STR loci to assess the power to assign parentage using paternity exclusion in four species: fin whale (Balaenoptera physalus), humpback whale (Megaptera novaeangliae), blue whale (B. musculus) and bowhead whale (Balaena mysticetus). Our results suggest that parentage studies should always be accompanied by a power analysis in order to ascertain that each individual specific study is based upon data with sufficient power to assign parentage with statistical rigor.The University of Groningen, University of Copenhagen, University of California Berkeley, Stockholm University, Aage V. Jensen Foundation), US National Marine Fisheries Service, the International Whaling Commission Scientific Committee, WWF-DK, the Commission for Scientific Research in Greenland, the Greenland Home Rule and by AZORES 2020, through the EU Fund.https://www.elsevier.com/locate/geccohj2024Mammal Research InstituteSDG-14:Life below wate
Multi-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species
The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (N = 62 to 152) and one mitochondrial locus (N = 226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, Bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range
Data for "Comparative Genomics Reveals Accelerated Evolution in Conserved Pathways during the Diversification of Anole Lizards"
Assembled genome builds, annotation files and sequence alignments associated with submitted manuscrip
- …