119 research outputs found
Deep-well ultrafast manipulation of a SQUID flux qubit
Superconducting devices based on the Josephson effect are effectively used
for the implementation of qubits and quantum gates. The manipulation of
superconducting qubits is generally performed by using microwave pulses with
frequencies from 5 to 15 GHz, obtaining a typical operating clock from 100MHz
to 1GHz. A manipulation based on simple pulses in the absence of microwaves is
also possible. In our system a magnetic flux pulse modifies the potential of a
double SQUID qubit from a symmetric double well to a single deep well
condition. By using this scheme with a Nb/AlOx/Nb system we obtained coherent
oscillations with sub-nanosecond period (tunable from 50ps to 200ps), very fast
with respect to other manipulating procedures, and with a coherence time up to
10ns, of the order of what obtained with similar devices and technologies but
using microwave manipulation. We introduce the ultrafast manipulation
presenting experimental results, new issues related to this approach (such as
the use of a feedback procedure for cancelling the effect of "slow"
fluctuations), and open perspectives, such as the possible use of RSFQ logic
for the qubit control.Comment: 9 pages, 7 figure
Probing High Frequency Noise with Macroscopic Resonant Tunneling
We have developed a method for extracting the high-frequency noise spectral
density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT)
rate measurements. The extracted noise spectral density is consistent with that
of an ohmic environment up to frequencies ~ 4 GHz. We have also derived an
expression for the MRT lineshape expected for a noise spectral density
consisting of such a broadband ohmic component and an additional strongly
peaked low-frequency component. This hybrid model provides an excellent fit to
experimental data across a range of tunneling amplitudes and temperatures
Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber
Action potential duration (APD) restitution, which relates APD to the
preceding diastolic interval (DI), is a useful tool for predicting the onset of
abnormal cardiac rhythms. However, it is known that different pacing protocols
lead to different APD restitution curves (RCs). This phenomenon, known as APD
rate-dependence, is a consequence of memory in the tissue. In addition to APD
restitution, conduction velocity restitution also plays an important role in
the spatiotemporal dynamics of cardiac tissue. We present new results
concerning rate-dependent restitution in the velocity of propagating action
potentials in a one-dimensional fiber. Our numerical simulations show that,
independent of the amount of memory in the tissue, waveback velocity exhibits
pronounced rate-dependence and the wavefront velocity does not. Moreover, the
discrepancy between waveback velocity RCs is most significant for small DI. We
provide an analytical explanation of these results, using a system of coupled
maps to relate the wavefront and waveback velocities. Our calculations show
that waveback velocity rate-dependence is due to APD restitution, not memory.Comment: 17 pages, 7 figure
Single flux quantum circuits with damping based on dissipative transmission lines
We propose and demonstrate the functioning of a special Rapid Single Flux
Quantum (RSFQ) circuit with frequency-dependent damping. This damping is
achieved by shunting individual Josephson junctions by pieces of open-ended RC
transmission lines. Our circuit includes a toggle flip-flop cell, Josephson
transmission lines transferring single flux quantum pulses to and from this
cell, as well as DC/SFQ and SFQ/DC converters. Due to the desired
frequency-dispersion in the RC line shunts which ensures sufficiently low noise
at low frequencies, such circuits are well-suited for integrating with the
flux/phase Josephson qubit and enable its efficient control.Comment: 6 pages incl. 6 figure
Geometrical dependence of low frequency noise in superconducting flux qubits
A general method for directly measuring the low-frequency flux noise (below
10 Hz) in compound Josephson junction superconducting flux qubits has been used
to study a series of 85 devices of varying design. The variation in flux noise
across sets of qubits with identical designs was observed to be small. However,
the levels of flux noise systematically varied between qubit designs with
strong dependence upon qubit wiring length and wiring width. Furthermore,
qubits fabricated above a superconducting ground plane yielded lower noise than
qubits without such a layer. These results support the hypothesis that
localized magnetic impurities in the vicinity of the qubit wiring are a key
source of low frequency flux noise in superconducting devices.Comment: 5 pages, 5 figure
A scalable readout system for a superconducting adiabatic quantum optimization system
We have designed, fabricated and tested an XY-addressable readout system that
is specifically tailored for the reading of superconducting flux qubits in an
integrated circuit that could enable adiabatic quantum optimization. In such a
system, the flux qubits only need to be read at the end of an adiabatic
evolution when quantum mechanical tunneling has been suppressed, thus
simplifying many aspects of the readout process. The readout architecture for
an -qubit adiabatic quantum optimization system comprises hysteretic dc
SQUIDs and rf SQUID latches controlled by bias lines. The
latching elements are coupled to the qubits and the dc SQUIDs are then coupled
to the latching elements. This readout scheme provides two key advantages:
First, the latching elements provide exceptional flux sensitivity that
significantly exceeds what may be achieved by directly coupling the flux qubits
to the dc SQUIDs using a practical mutual inductance. Second, the states of the
latching elements are robust against the influence of ac currents generated by
the switching of the hysteretic dc SQUIDs, thus allowing one to interrogate the
latching elements repeatedly so as to mitigate the effects of stochastic
switching of the dc SQUIDs. We demonstrate that it is possible to achieve
single qubit read error rates of with this readout scheme. We have
characterized the system-level performance of a 128-qubit readout system and
have measured a readout error probability of in the presence
of optimal latching element bias conditions.Comment: Updated for clarity, final versio
In situ synthesis, structural chemistry and vibrational spectroscopy of Zn-doped Ca5Mg4(VO4)6
The phase formation of the solid solution Ca5Mg4–xZnx(VO4)6 (0≤x≤4) was studied in situ using differential scanning calorimetry and high-temperature X-Ray powder diffraction (XRPD). XRPD analysis shows the appearance of unavoidable secondary pyrovanadate phases using conventional synthesis methods. The local structure of the solid solution was verified by vibrational spectroscopy. The analysis of the infrared and Raman spectroscopy data allows establishing the main features between vanadate garnets and their isostructural analogs among natural silicates
AIRFLOW CONTROL UNIT
The airflow control unit has been developed. The device consists of electrical amplifiers, the mechanical anemometer and the axial-flow fan
- …