162 research outputs found

    Critical glycosylated residues in exon three of erythrocyte Glycophorin A engage Plasmodium falciparum EBA-175 and define receptor specificity

    Get PDF
    Erythrocyte invasion is an essential step in the pathogenesis of malaria. The erythrocyte binding-like (EBL) family of Plasmodium falciparum proteins recognizes glycophorins (Gp) on erythrocytes and plays a critical role in attachment during invasion. However, the molecular basis for specific receptor recognition by each parasite ligand has remained elusive, as is the case with the ligand/receptor pair P. falciparum EBA-175 (PfEBA-175)/GpA. This is due largely to difficulties in producing properly glycosylated and functional receptors. Here, we developed an expression system to produce recombinant glycosylated and functional GpA, as well as mutations and truncations. We identified the essential binding region and determinants for PfEBA-175 engagement, demonstrated that these determinants are required for the inhibition of parasite growth, and identified the glycans important in mediating the PfEBA-175–GpA interaction. The results suggest that PfEBA-175 engages multiple glycans of GpA encoded by exon 3 and that the presentation of glycans is likely required for high-avidity binding. The absence of exon 3 in GpB and GpE due to a splice site mutation confers specific recognition of GpA by PfEBA-175. We speculate that GpB and GpE may have arisen due to selective pressure to lose the PfEBA-175 binding site in GpA. The expression system described here has wider application for examining other EBL members important in parasite invasion, as well as additional pathogens that recognize glycophorins. The ability to define critical binding determinants in receptor-ligand interactions, as well as a system to genetically manipulate glycosylated receptors, opens new avenues for the design of interventions that disrupt parasite invasion

    Structural and functional basis for inhibition of erythrocyte invasion by antibodies that target Plasmodium falciparum EBA-175

    Get PDF
    Disrupting erythrocyte invasion by Plasmodium falciparum is an attractive approach to combat malaria. P. falciparum EBA-175 (PfEBA-175) engages the host receptor Glycophorin A (GpA) during invasion and is a leading vaccine candidate. Antibodies that recognize PfEBA-175 can prevent parasite growth, although not all antibodies are inhibitory. Here, using x-ray crystallography, small-angle x-ray scattering and functional studies, we report the structural basis and mechanism for inhibition by two PfEBA-175 antibodies. Structures of each antibody in complex with the PfEBA-175 receptor binding domain reveal that the most potent inhibitory antibody, R217, engages critical GpA binding residues and the proposed dimer interface of PfEBA-175. A second weakly inhibitory antibody, R218, binds to an asparagine-rich surface loop. We show that the epitopes identified by structural studies are critical for antibody binding. Together, the structural and mapping studies reveal distinct mechanisms of action, with R217 directly preventing receptor binding while R218 allows for receptor binding. Using a direct receptor binding assay we show R217 directly blocks GpA engagement while R218 does not. Our studies elaborate on the complex interaction between PfEBA-175 and GpA and highlight new approaches to targeting the molecular mechanism of P. falciparum invasion of erythrocytes. The results suggest studies aiming to improve the efficacy of blood-stage vaccines, either by selecting single or combining multiple parasite antigens, should assess the antibody response to defined inhibitory epitopes as well as the response to the whole protein antigen. Finally, this work demonstrates the importance of identifying inhibitory-epitopes and avoiding decoy-epitopes in antibody-based therapies, vaccines and diagnostics

    Structural analysis of the synthetic Duffy Binding Protein (DBP) antigen DEKnull relevant for Plasmodium vivax malaria vaccine design

    Get PDF
    The Plasmodium vivax vaccine candidate Duffy Binding Protein (DBP) is a protein necessary for P. vivax invasion of reticulocytes. The polymorphic nature of DBP induces strain-specific immune responses that pose unique challenges for vaccine development. DEKnull is a synthetic DBP based antigen that has been engineered through mutation to enhance induction of blocking inhibitory antibodies. We determined the x-ray crystal structure of DEKnull to identify if any conformational changes had occurred upon mutation. Computational and experimental analyses assessed immunogenicity differences between DBP and DEKnull epitopes. Functional binding assays with monoclonal antibodies were used to interrogate the available epitopes in DEKnull. We demonstrate that DEKnull is structurally similar to the parental Sal1 DBP. The DEKnull mutations do not cause peptide backbone shifts within the polymorphic loop, or at either the DBP dimerization interface or DARC receptor binding pockets, two important structurally conserved protective epitope motifs. All B-cell epitopes, except for the mutated DEK motif, are conserved between DEKnull and DBP. The DEKnull protein retains binding to conformationally dependent inhibitory antibodies. DEKnull is an iterative improvement of DBP as a vaccine candidate. DEKnull has reduced immunogenicity to polymorphic regions responsible for strain-specific immunity while retaining conserved protein folds necessary for induction of strain-transcending blocking inhibitory antibodies

    Consistent, Durable, and Safe Memory Management for Byte-addressable Non Volatile Main Memory

    Get PDF
    This paper presents three building blocks for enabling the efficient and safe design of persistent data stores for emerging non-volatile memory technologies. Taking the fullest advantage of the low latency and high bandwidths of emerging memories such as phase change memory (PCM), spin torque, and memristor necessitates a serious look at placing these persistent storage technologies on the main memory bus. Doing so, however, introduces critical challenges of not sacrificing the data reliability and consistency that users demand from storage. This paper introduces techniques for (1) robust wear-aware memory allocation, (2) preventing of erroneous writes, and (3) consistency-preserving updates that are cacheefficient. We show through our evaluation that these techniques are efficiently implementable and effective by demonstrating a B+-tree implementation modified to make full use of our toolkit.

    Rhoptry proteins ROP5 and ROP18 are major murine virulence factors in genetically divergent South American strains of Toxoplasma gondii

    Get PDF
    Toxoplasma gondii has evolved a number of strategies to evade immune responses in its many hosts. Previous genetic mapping of crosses between clonal type 1, 2, and 3 strains of T. gondii, which are prevalent in Europe and North America, identified two rhoptry proteins, ROP5 and ROP18, that function together to block innate immune mechanisms activated by interferon gamma (IFNg) in murine hosts. However, the contribution of these and other virulence factors in more genetically divergent South American strains is unknown. Here we utilized a cross between the intermediately virulent North American type 2 ME49 strain and the highly virulent South American type 10 VAND strain to map the genetic basis for differences in virulence in the mouse. Quantitative trait locus (QTL) analysis of this new cross identified one peak that spanned the ROP5 locus on chromosome XII. CRISPR-Cas9 mediated deletion of all copies of ROP5 in the VAND strain rendered it avirulent and complementation confirmed that ROP5 is the major virulence factor accounting for differences between type 2 and type 10 strains. To extend these observations to other virulent South American strains representing distinct genetic populations, we knocked out ROP5 in type 8 TgCtBr5 and type 4 TgCtBr18 strains, resulting in complete loss of virulence in both backgrounds. Consistent with this, polymorphisms that show strong signatures of positive selection in ROP5 were shown to correspond to regions known to interface with host immunity factors. Because ROP5 and ROP18 function together to resist innate immune mechanisms, and a significant interaction between them was identified in a two-locus scan, we also assessed the role of ROP18 in the virulence of South American strains. Deletion of ROP18 in South American type 4, 8, and 10 strains resulted in complete attenuation in contrast to a partial loss of virulence seen for ROP18 knockouts in previously described type 1 parasites. These data show that ROP5 and ROP18 are conserved virulence factors in genetically diverse strains from North and South America, suggesting they evolved to resist innate immune defenses in ancestral T. gondii strains, and they have subsequently diversified under positive selection
    • …
    corecore