168 research outputs found

    ENHANCEMENT OF TIMBER PRODUCTION

    Get PDF

    Chestnut: from coppice to structural timber. The case study of "Uso Fiume" beams sampled in Liguria

    Get PDF
    <p>Recently Agriculture Department of Liguria Region had supported studies and researches on the timber quality of living trees in local coppice chestnut forests, with the prospect to produce also timber for structural use. Under some ad-hoc funds a 30 years old coppice forest in the high Bormida Valley, never thinned after the last utilization, has been chosen for sampling. 18 selected trunks were felled and the assortment called “Uso Fiume” (UF) was chosen, getting 49 beams (cross-section from 12¥12 to 24¥24 cm), by way of saw-mill operations The UF-beam is a structural element, derived from Italian tradition. Such elements are used in Italian buildings over the time, in substitution to structural sawn timber, principally for roofing. The UF-beam is a square edged log with wane; more precisely it is a full log, edged on four sides, maintaining boxed heart and an approximately central pith. Today the features of such a beam is established according to the specific Italian standard UNI 11035-3 for spruce and fir and to the CUAP (Common Understanding of Assessment Procedure) n. 03.24/22 for chestnut and conifers. The beams were visually graded according to the Visual Strength Grading procedure and the physical and mechanical properties (density, modulus of elasticity-MOE and modulus of rupture- MOR) were determined according to the standard requirements (EN 408, EN 384, ISO 3131), disregarding the moisture content: the mechanical tests were performed with wood in green state (moisture content M.C.&gt;30%) because it is the actual condition of use in building, due to the very low permeability of the chestnut heartwood which entails long seasoning time of large cross section beams. The study showed very high yields considering the stems-to-beams volume ratio, close to 70%. Characteristics values of the sample resulted: char. density kg/m³, char. modulus of elasticity E0,mean 10,3 GPa and char. bending strength fm,k 28,5 MPa. These results can be considered very promising because the data match the Strength Class D24 (EN 338), the same Class as full cross-section chestnut beams (at M.C.=12%).</p

    Full-size truss joints made of old wood: laboratory tests on shear failures

    Get PDF

    Identification of novel genetic alterations in pediatric cytogenetically normal acute myeloid leukemia by next-generation sequencing

    Get PDF
    Pediatric acute myeloid leukemia (AML) is a molecularly heterogeneous disease that arises from genetic alterations in pathways that regulate self-renewal and myeloid differentiation. While the majority of patients carry recurrent chromosomal translocations, almost 20% of childhood AML do not show any recognizable cytogenetic alteration and are defined as cytogenetically normal (CN)-AML. CN-AML patients have always showed a great variability in response to therapy and overall outcome, underlining the presence of unknown genetic changes, not detectable by conventional analyses, but relevant for pathogenesis, and outcome of AML. The development of novel genome-wide techniques such as next-generation sequencing, have tremendously improved our ability to interrogate the cancer genome. Based on this background, the aim of this research study was to investigate the mutational landscape of pediatric CN-AML patients negative for all the currently known somatic mutations reported in AML through whole-transcriptome sequencing (RNA-seq). RNA-seq performed on diagnostic leukemic blasts from 19 pediatric CN-AML cases revealed a considerable incidence of cryptic chromosomal rearrangements, with the identification of 21 putative fusion genes. Several of the fusion genes that were identified in this study are recurrent and might have a prognostic and/or therapeutic relevance. A paradigm of that is the CBFA2T3-GLIS2 fusion, which has been demonstrated to be a common alteration in pediatric CN-AML, predicting poor outcome. Important findings have been also obtained in the identification of novel therapeutic targets. On one side, the identification of NUP98-JARID1A fusion suggests the use of disulfiram; on the other, here we describe alteration-activating tyrosine kinases, providing functional data supporting the use of tyrosine kinase inhibitors to specifically inhibit leukemia cells. This study provides new insights in the knowledge of genetic alterations underlying pediatric AML, defines novel prognostic markers and putative therapeutic targets, and prospectively ensures a correct risk stratification and risk-adapted therapy also for the “all-neg” AML subgroup
    corecore