159 research outputs found
Comparison of maximum detail coefficient under different defects.
Comparison of maximum detail coefficient under different defects.</p
Analytical filter bank.
The current highway waveform guardrail recognition technology has encountered problems with low segmentation accuracy and strong noise interference. Therefore, an improved U-net semantic segmentation model is proposed to improve the efficiency of road maintenance detection. The model training is guided by mixed expansion convolution and mixed loss function, while the presence of guardrail shedding is investigated by using partial mean values of gray values in ROI region based on segmentation results, while the first-order detail coefficients of wavelet transform are applied to detect guardrail defects and deformation. It has been determined that the Miou and Dice of the improved model are improved by 8.63% and 17.67%, respectively, over the traditional model, and that the method of detecting defects in the data is more accurate than 85%. As a result of efficient detection of highway waveform guardrail, the detection process is shortened and the effectiveness of the detection is improved later on during road maintenance.</div
Comparison of normal, deformed and damaged wavelengths.
Comparison of normal, deformed and damaged wavelengths.</p
Histogram changes before and after equalization.
The current highway waveform guardrail recognition technology has encountered problems with low segmentation accuracy and strong noise interference. Therefore, an improved U-net semantic segmentation model is proposed to improve the efficiency of road maintenance detection. The model training is guided by mixed expansion convolution and mixed loss function, while the presence of guardrail shedding is investigated by using partial mean values of gray values in ROI region based on segmentation results, while the first-order detail coefficients of wavelet transform are applied to detect guardrail defects and deformation. It has been determined that the Miou and Dice of the improved model are improved by 8.63% and 17.67%, respectively, over the traditional model, and that the method of detecting defects in the data is more accurate than 85%. As a result of efficient detection of highway waveform guardrail, the detection process is shortened and the effectiveness of the detection is improved later on during road maintenance.</div
S1 Data -
The current highway waveform guardrail recognition technology has encountered problems with low segmentation accuracy and strong noise interference. Therefore, an improved U-net semantic segmentation model is proposed to improve the efficiency of road maintenance detection. The model training is guided by mixed expansion convolution and mixed loss function, while the presence of guardrail shedding is investigated by using partial mean values of gray values in ROI region based on segmentation results, while the first-order detail coefficients of wavelet transform are applied to detect guardrail defects and deformation. It has been determined that the Miou and Dice of the improved model are improved by 8.63% and 17.67%, respectively, over the traditional model, and that the method of detecting defects in the data is more accurate than 85%. As a result of efficient detection of highway waveform guardrail, the detection process is shortened and the effectiveness of the detection is improved later on during road maintenance.</div
Traditional U-net network structure.
The current highway waveform guardrail recognition technology has encountered problems with low segmentation accuracy and strong noise interference. Therefore, an improved U-net semantic segmentation model is proposed to improve the efficiency of road maintenance detection. The model training is guided by mixed expansion convolution and mixed loss function, while the presence of guardrail shedding is investigated by using partial mean values of gray values in ROI region based on segmentation results, while the first-order detail coefficients of wavelet transform are applied to detect guardrail defects and deformation. It has been determined that the Miou and Dice of the improved model are improved by 8.63% and 17.67%, respectively, over the traditional model, and that the method of detecting defects in the data is more accurate than 85%. As a result of efficient detection of highway waveform guardrail, the detection process is shortened and the effectiveness of the detection is improved later on during road maintenance.</div
IOU changes across different models.
The current highway waveform guardrail recognition technology has encountered problems with low segmentation accuracy and strong noise interference. Therefore, an improved U-net semantic segmentation model is proposed to improve the efficiency of road maintenance detection. The model training is guided by mixed expansion convolution and mixed loss function, while the presence of guardrail shedding is investigated by using partial mean values of gray values in ROI region based on segmentation results, while the first-order detail coefficients of wavelet transform are applied to detect guardrail defects and deformation. It has been determined that the Miou and Dice of the improved model are improved by 8.63% and 17.67%, respectively, over the traditional model, and that the method of detecting defects in the data is more accurate than 85%. As a result of efficient detection of highway waveform guardrail, the detection process is shortened and the effectiveness of the detection is improved later on during road maintenance.</div
Overall flow chart, the process structure.
The current highway waveform guardrail recognition technology has encountered problems with low segmentation accuracy and strong noise interference. Therefore, an improved U-net semantic segmentation model is proposed to improve the efficiency of road maintenance detection. The model training is guided by mixed expansion convolution and mixed loss function, while the presence of guardrail shedding is investigated by using partial mean values of gray values in ROI region based on segmentation results, while the first-order detail coefficients of wavelet transform are applied to detect guardrail defects and deformation. It has been determined that the Miou and Dice of the improved model are improved by 8.63% and 17.67%, respectively, over the traditional model, and that the method of detecting defects in the data is more accurate than 85%. As a result of efficient detection of highway waveform guardrail, the detection process is shortened and the effectiveness of the detection is improved later on during road maintenance.</div
Comparison of segmentation results of each algorith.
Comparison of segmentation results of each algorith.</p
Image comparison before and after correction.
The current highway waveform guardrail recognition technology has encountered problems with low segmentation accuracy and strong noise interference. Therefore, an improved U-net semantic segmentation model is proposed to improve the efficiency of road maintenance detection. The model training is guided by mixed expansion convolution and mixed loss function, while the presence of guardrail shedding is investigated by using partial mean values of gray values in ROI region based on segmentation results, while the first-order detail coefficients of wavelet transform are applied to detect guardrail defects and deformation. It has been determined that the Miou and Dice of the improved model are improved by 8.63% and 17.67%, respectively, over the traditional model, and that the method of detecting defects in the data is more accurate than 85%. As a result of efficient detection of highway waveform guardrail, the detection process is shortened and the effectiveness of the detection is improved later on during road maintenance.</div
- …