13 research outputs found

    The AST3-NIR Camera for the Kunlun Infrared Sky Survey

    Get PDF
    AST3-NIR is a new infrared camera for deployment with the AST3-3 wide-field survey telescope to Dome A on the Antarctic plateau. This project is designed to take advantage of the low Antarctic infrared sky thermal background (particularly within the Kdark near infrared atmospheric window at 2.4 μm) and the long Antarctic nights to provide high sensitivity temporal data from astronomical sources. The data collected from the Kunlun Infrared Sky Survey (KISS) will be used to conduct a range of astronomical science cases including the study of supernovae, exo-planets, variable stars, and the cosmic infrared background

    The AST3-NIR Camera for the Kunlun Infrared Sky Survey

    Get PDF
    AST3-NIR is a new infrared camera for deployment with the AST3-3 wide-field survey telescope to Dome A on the Antarctic plateau. This project is designed to take advantage of the low Antarctic infrared sky thermal background (particularly within the Kdark near infrared atmospheric window at 2.4 μm) and the long Antarctic nights to provide high sensitivity temporal data from astronomical sources. The data collected from the Kunlun Infrared Sky Survey (KISS) will be used to conduct a range of astronomical science cases including the study of supernovae, exo-planets, variable stars, and the cosmic infrared background

    Further constraint of the in situ cosmogenic 10Be production rate in pyroxene and a viability test for late Quaternary exposure dating

    No full text
    Beryllium-10 (10Be) in quartz represents the most common in situ cosmogenic nuclide used for quantifying Earth-surface processes, primarily due to the prevalence of quartz in the Earth's crust. However many landscapes lack quartz-bearing rocks, thus other nuclide-mineral pairs are required for geochronometric and geomorphic applications. Here we describe the successful isolation and measurement of in situ10Be concentrations in pyroxene from two mafic sample sets: (i) andesite boulders of the Murimotu Formation debris avalanche on Mt. Ruapehu, New Zealand, and (ii) dolerite cobbles deposited in a ∼100 m vertical transect at Mt. Gran by Mackay Glacier, Antarctica. Precise radiocarbon age constraint of the New Zealand site provides further geological constraint of the reference (at sea level and high latitude) 10Be production rate in pyroxene, which we find to be indistinguishable from a previous estimate. Combining our results with previous data yields a reference production rate of 3.2 ± 0.8 at. g−1 yr−1 (n=5; ‘Lm’ scaling). Application of this rate to the glacial cobbles at Mackay Glacier yields a relatively coherent chronology of ice surface lowering between ∼14 and 6 ka, which is broadly consistent with a well-constrained quartz-based 10Be chronology from nearby nunataks. Improving the viability of in situ10Be for geological applications in mafic domains requires increased analytical precision beyond current levels. This improvement may be best achieved by further modification of the quartz-based methodologies for 10Be purification, in order to better handle the high cationic contaminant loads of ferromagnesian minerals. In addition, further 10Be measurements from suitable mafic sedimentary deposits with independent age control (e.g. existing cosmogenic 3He calibration sites) will help to refine estimates of the reference production rate.This research was funded by a University Research Fund grant awarded to KPN and ANM by Victoria University of Wellington

    STRUCTURAL AND NON-STRUCTURAL BMPS FOR PROTECTING STREAMS

    No full text
    Stream ecosystems in three different locations in the United States were found to benefit in a similar fashion from retention of watershed forest and wetland cover and wide, continuous riparian buffers with mature, native vegetation. The findings can help guide comprehensive watershed management and application of these non-structural practices in low-impact urban design. Intensive study of structural best management practices (BMPs) in one location found that, even with a relatively high level of attention, a minority of the developed area is served by these BMPs. Those BMPs installed are capable of mitigating an even smaller share of urban impacts, primarily because of inadequacies in design standards. Even with these shortcomings, though, results showed that structural BMPs help to sustain aquatic biological communities, especially at moderately high urbanization levels, where space limits non-structural options

    Further constraint of the in situ cosmogenic 10Be production rate in pyroxene and a viability test for late Quaternary exposure dating

    Get PDF
    Beryllium-10 (10Be) in quartz represents the most common in situ cosmogenic nuclide used for quantifying Earth-surface processes, primarily due to the prevalence of quartz in the Earth's crust. However many landscapes lack quartz-bearing rocks, thus other nuclide-mineral pairs are required for geochronometric and geomorphic applications. Here we describe the successful isolation and measurement of in situ10Be concentrations in pyroxene from two mafic sample sets: (i) andesite boulders of the Murimotu Formation debris avalanche on Mt. Ruapehu, New Zealand, and (ii) dolerite cobbles deposited in a ∼100 m vertical transect at Mt. Gran by Mackay Glacier, Antarctica. Precise radiocarbon age constraint of the New Zealand site provides further geological constraint of the reference (at sea level and high latitude) 10Be production rate in pyroxene, which we find to be indistinguishable from a previous estimate. Combining our results with previous data yields a reference production rate of 3.2 ± 0.8 at. g−1 yr−1 (n=5; ‘Lm’ scaling). Application of this rate to the glacial cobbles at Mackay Glacier yields a relatively coherent chronology of ice surface lowering between ∼14 and 6 ka, which is broadly consistent with a well-constrained quartz-based 10Be chronology from nearby nunataks. Improving the viability of in situ10Be for geological applications in mafic domains requires increased analytical precision beyond current levels. This improvement may be best achieved by further modification of the quartz-based methodologies for 10Be purification, in order to better handle the high cationic contaminant loads of ferromagnesian minerals. In addition, further 10Be measurements from suitable mafic sedimentary deposits with independent age control (e.g. existing cosmogenic 3He calibration sites) will help to refine estimates of the reference production rate

    Progress on the Gemini High-Resolution Optical SpecTrograph (GHOST) design

    No full text
    The Gemini High-Resolution Optical SpecTrograph (GHOST) is the newest instrument being developed for the Gemini telescopes, in a collaboration between the Australian Astronomical Observatory (AAO), the NRC - Herzberg in Canada and the Australian National University (ANU). We describe the process of design optimisation that utilizes the unique strengths of the new partner, NRC - Herzberg, the design and need for the slit viewing camera system, and we describe a simplification for the lenslet-based slit reformatting. Finally, we out- line the updated project plan, and describe the unique scientific role this instrument will have in an international context, from exoplanets through to the distant Universe.10 page(s

    KOALA: A wide-field, 1000 element integral-field unit for the Anglo-Australian Telescope

    No full text
    KOALA, the Kilofibre Optimised Astronomical Lenslet Array, is a wide-field, high efficiency integral field unit being designed for use with the bench mounted AAOmega spectrograph on the AAT. KOALA will have 1000 fibres in a rectangular array with a selectable field of view of either 1390 or 430 sq. arcseconds with a spatial sampling of 1.25'' or 0.7'' respectively. To achieve this KOALA will use a telecentric double lenslet array with interchangeable fore-optics. The IFU will feed AAOmega via a 31m fibre run. The efficiency of KOALA is expected to be ≈52% at 3700A and ≈ 66% at 6563Å with a throughput of > 52% over the entire wavelength range. © 2012 SPIE.link_to_subscribed_fulltex

    The AAO's Gemini High-resolution Optical SpecTrograph (GHOST) concept

    No full text
    The Gemini High-Resolution Optical SpecTrograph (GHOST) will fill an important gap in the current suite of Gemini instruments. We will describe the Australian Astronomical Observatory (AAO)-led concept for GHOST, which consists of a multi-object, compact, high-efficiency, fixed-format, fiber-fed design. The spectrograph itself is a four-arm variant of the asymmetric white-pupil echelle Kiwispec spectrograph, Kiwisped, produced by Industrial Research Ltd. This spectrograph has an R4 grating and a 100mm pupil, and separate cross-disperser and camera optics for each of the four arms, carefully optimized for their respective wavelength ranges. We feed this spectrograph with a miniature lenslet-based IFU that sub-samples the seeing disk of a single object into 7 hexagonal sub-images, reformatting this into a slit with a second set of double microlenses at the spectrograph entrance with relatively little loss due to focal-ratio degradation. This reformatting enables high spectral resolution from a compact design that fits well within the relatively tight GHOST budget. We will describe our baseline 2-object R∼50,000 design with full wavelength coverage from the ultraviolet to the silicon cutoff, as well as the high-resolution single-object R∼75,000 mode.13 page(s
    corecore