2,308 research outputs found

    Temperature and magnetization-dependent band-gap renormalization and optical many-body effects in diluted magnetic semiconductors

    Full text link
    We calculate the Coulomb interaction induced density, temperature and magnetization dependent many-body band-gap renormalization in a typical diluted magnetic semiconductor GaMnAs in the optimally-doped metallic regime as a function of carrier density and temperature. We find a large (about 0.1 eV) band gap renormalization which is enhanced by the ferromagnetic transition. We also calculate the impurity scattering effect on the gap narrowing. We suggest that the temperature, magnetization, and density dependent band gap renormalization could be used as an experimental probe to determine the valence band or the impurity band nature of carrier ferromagnetism.Comment: Revised versio

    Influence of non-local exchange on RKKY interactions in III-V diluted magnetic semiconductors

    Full text link
    The RKKY interaction between substitutional Mn local moments in GaAs is both spin-direction-dependent and spatially anisotropic. In this Letter we address the strength of these anisotropies using a semi-phenomenological tight-binding model which treats the hybridization between Mn d-orbitals and As p-orbitals perturbatively and accounts realistically for the non-local exchange interaction between their spins. We show that exchange non-locality, valence-band spin-orbit coupling, and band-structure anisotropy all play a role in determining the strength of both effects. We use these results to estimate the degree of ground-state magnetization suppression due to frustrating interactions between randomly located Mn ions.Comment: 4 pages RevTeX, 2 figures included, v2: replacement because of font proble

    Liquid antiferromagnets in two dimensions

    Full text link
    It is shown that, for proper symmetry of the parent lattice, antiferromagnetic order can survive in two-dimensional liquid crystals and even isotropic liquids of point-like particles, in contradiction to what common sense might suggest. We discuss the requirements for antiferromagnetic order in the absence of translational and/or orientational lattice order. One example is the honeycomb lattice, which upon melting can form a liquid crystal with quasi-long-range orientational and antiferromagnetic order but short-range translational order. The critical properties of such systems are discussed. Finally, we draw conjectures for the three-dimensional case.Comment: 4 pages RevTeX, 4 figures include

    Clustering in disordered ferromagnets: The Curie temperature in diluted magnetic semiconductors

    Full text link
    We theoretically investigate impurity correlation and magnetic clustering effects on the long-range ferromagnetic ordering in diluted magnetic semiconductors, such as Ga1xMnxAs\textrm{Ga}_{1-x}\textrm{Mn}_{x}\textrm{As}, using analytical arguments and direct Monte Carlo simulations. We obtain an analytic formula for the ferromagnetic transition temperature TcT_{c} which becomes asymptotically exact in the strongly disordered, highly dilute (i.e. small xx) regime. We establish that impurity correlations have only small effects on TcT_{c} with the neutrally correlated random disorder producing the nominally highest TcT_{c}. We find that the ferromagnetic order is approached from the high temperature paramagnetic side through a random magnetic clustering phenomenon consistent with the percolation transition scenario.Comment: 5 pages, 4 figure

    Resonant and Kondo tunneling through molecular magnets

    Full text link
    Transport through molecular magnets is studied in the regime of strong coupling to the leads. We consider a resonant-tunneling model where the electron spin in a quantum dot or molecule is coupled to an additional local, anisotropic spin via exchange interaction. The two opposite regimes dominated by resonant tunneling and by Kondo transport, respectively, are considered. In the resonant-tunneling regime, the stationary state of the impurity spin is calculated for arbitrarily strong molecule-lead coupling using a master-equation approach, which treats the exchange interaction perturbatively. We find that the characteristic fine structure in the differential conductance persists even if the hybridization energy exceeds thermal energies. Transport in the Kondo regime is studied within a diagrammatic approach. We show that magnetic anisotropy gives rise to a splitting of the Kondo peak at low bias voltages.Comment: 13 pages, 5 figures, version as publishe

    Renormalization group approach to layered superconductors

    Full text link
    A renormalization group theory for a system consisting of coupled superconducting layers as a model for typical high-temperature superconducters is developed. In a first step the electromagnetic interaction over infinitely many layers is taken into account, but the Josephson coupling is neglected. In this case the corrections to two-dimensional behavior due to the presence of the other layers are very small. Next, renormalization group equations for a layered system with very strong Josephson coupling are derived, taking into account only the smallest possible Josephson vortex loops. The applicability of these two limiting cases to typical high-temperature superconductors is discussed. Finally, it is argued that the original renormalization group approach by Kosterlitz is not applicable to a layered system with intermediate Josephson coupling.Comment: RevTeX, 15 pages, 4 figures can be obtained from the author by conventional mail; accepted for publication in Phys. Rev.

    Reaction Kinetics Analysis of Urethane Polymerization to Gelation

    Get PDF
    A chemical reaction analysis of a thermosetting, urethane resin formulated from a triol and a diisocyanate is reported. Population density distributions of oligomeric molecules, monomer concentration, the cumulative molar concentration of intramolecular bonds, the resin\u27s average molecular weights, and extent of reaction were determined as a function of time. Rate expressions for intermolecular reactions were first order with respect to the concentration of each reactant and were proportional to the functionality of their respective chemical moieties. Rate expressions for intramolecular reactions were first order with respect to the concentration of the reactant and were proportional to the functionality of the limiting chemical moiety on the reactant. The initial ratio of the chemical equivalents and effects of dilution were incorporated into numerical simulations. Stanford and Stepto\u27s experimental data were analyzed. Gel points and the concentration of intramolecular bonds were correlated as a function of conversion. Intramolecular reaction rate expressions derived with the aid of Gaussian chain statistics require the molar concentrations of all chemical isomers of a specified chemical composition. The present reaction rate expression allows chemical isomers to be lumped into a single population density distribution variable, substantially reducing the dimensions of the simulation. Numerical results demonstrate that the simplified rate expression is an excellent
    corecore