23 research outputs found

    Tissue-specific metabolism of benzo[a]pyrene in rainbow trout (Oncorhynchus mykiss): a comparison between the liver and immune organs.

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) are immunotoxicants in fish. In mammals, phase I metabolites are believed to be critically involved in the immunotoxicity of PAHs. This mechanism has been suggested for fish as well. The present study investigates the capacity of immune organs (head kidney, spleen) of rainbow trout, Oncorhynchus mykiss, to metabolize the prototypic PAH, benzo[a]pyrene (BaP). To this end, we analyzed 1) the induction of enzymatic capacity measured as 7-ethoxyresorufin-O-deethylase (EROD) activity in immune organs compared with liver, 2) the organ profiles of BaP metabolites generated in vivo, and 3) rates of microsomal BaP metabolite production in vitro. All measurements were done for control fish and for fish treated with an intraperitoneal injection of 15 mg BaP/kg body weight. In exposed trout, the liver, head kidney, and spleen contained similar levels of BaP, whereas EROD induction differed significantly between the organs, with liver showing the highest induction factor (132.8×), followed by head kidney (38.4×) and spleen (1.4×). Likewise, rates of microsomal metabolite formation experienced the highest induction in the liver of BaP-exposed trout, followed by the head kidney and spleen. Microsomes from control fish displayed tissue-specific differences in metabolite production. In contrast, in BaP-exposed trout, microsomes of all organs produced the potentially immunotoxic BaP-7,8-dihydrodiol as the main metabolite. The findings from this study show that PAHs, like BaP, are distributed into immune organs of fish and provide the first evidence that immune organs possess inducible PAH metabolism leading to in situ production of potentially immunotoxic PAH metabolites

    Assessment of the Mutagenicity of Sediments from Yangtze River Estuary Using Salmonella Typhimurium/Microsome Assay.

    No full text
    Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (-) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components

    Effect-Directed Analysis of Aryl Hydrocarbon Receptor Agonists in Sediments from the Three Gorges Reservoir, China

    No full text
    The construction of the Three Gorges Dam (TGD) in the Yangtze River raises great concern in ecotoxicological research since large amounts of pollutants enter the Three Gorges Reservoir (TGR) water bodies after TGD impoundment. In this work, effect-directed analysis (EDA), combining effect assessment, fractionation procedure, and target and nontarget analyses, was used to characterize aryl hydrocarbon receptor (AhR) agonists in sediments of the TGR. Priority polycyclic aromatic hydrocarbons (PAHs) containing four to five aromatic rings were found to contribute significantly to the overall observed effects in the area of Chongqing. The relatively high potency fractions in the Kaixian area were characterized by PAHs and methylated derivatives thereof and heterocyclic polycyclic aromatic compounds (PACs) such as dinaphthofurans. Benzothiazole and derivatives were identified as possible AhR agonists in the Kaixian area based on nontarget liquid chromatography-high resolution mass spectrometry (LC-HRMS). To our knowledge, this study is the first one applying the EDA approach and identifying potential AhR agonists in TGR

    Content of total organic carbon (TOC) (%) and concentrations of the 16 US EPA-polycyclic aromatic hydrocarbons (PAHs) (ng/g dw) in sediment samples from the Yangtze River estuary.

    No full text
    <p>Note: The data of PAHs were obtained from Liu et al. (2014). n.d. = not detectable or below the detection limit.</p><p>Content of total organic carbon (TOC) (%) and concentrations of the 16 US EPA-polycyclic aromatic hydrocarbons (PAHs) (ng/g dw) in sediment samples from the Yangtze River estuary.</p

    Mutagenic activity of three fractions of samples Y2, Y7, Y8 and Y9.

    No full text
    <p>Mutagenicity measured by the Ames fluctuation assay using TA98 bacteria with and without bioactivation enzymes (S9). Mutagenic activity is expressed as maximum induction factor within the dose-response curve.</p

    Mutagenic activity of nine sediment extracts from Yangtze River estuary.

    No full text
    <p>Mutagenic measured by the Ames fluctuation assay using both TA98 and TA100 bacteria strain with and without bioactivation enzymes (S9). TA100 with or without S9 is not shown because no mutagenic effects were observed in any of the samples. Data are shown as maximum induction factor (IF<sub>max</sub>) as the highest IF score of a particular sample within the dose-response curve. Multiple symbols indicate different significant levels relative to the negative control (NC): *<i>p</i><0.05, **<i>p</i><0.01.</p

    Linking Ah receptor mediated effects of sediments and impacts on fish to key pollutants in the Yangtze Three Gorges Reservoir, China – A comprehensive perspective

    No full text
    The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1-hydroxypyrene was detected in bile of fish from all sites. All endpoints in combination with the chemical data suggest a pivotal role of PAHs in the observed ecotoxicological impacts
    corecore