370 research outputs found

    The Irish Hardy Nursery Stock Industry: Recent Trends and Competitive Position.

    Get PDF
    End of Project ReportTh Irish Hardy Nursery Stock (HNS) industry has grown considerably in recent times. For the industry to maintain this level of growth it must remain competitive, particularly relative to the UK and the Netherlands, Ireland's main trading partners for HNS. Consequently, the objectives of this research were to (i) establish the size and value of the Irish HNS industry in 1999/2000, and (ii) examine the relative competitiveness of the Irish HNS industry, using profitability and value as indicators of competitiveness. A census of the Irish HNS industry was carried out between September 2000 and June 2001 to establish the size and value of the industry. The results of the census showed that the net value of plants produced on Irish nurseries amounted to €30.6m in 1999, an increase of €6.8m from €23.4m at the last census in 1996. In the same period the total area devoted to HNS production also increased from 391 ha in 1997 to 465ha in 1999. Kildare remains the most important county in the industry in terms of value because of the large area devoted to outdoor containerised production and production under protection. In terms of competitiveness, unpaid labour (imputed) had a significant effect on profitability levels for the three countries. When an imputed charge for unpaid labour was included in the analysis, the UK and Ireland had relatively higher Net Nursery Income (NNI) than the Netherlands. However, when the imputed charge for unpaid labour was excluded from the analysis, Ireland and the Netherlands had relatively higher NNI values than the UK. Firm size and mechanisation levels, were examined as possible sources of inter-firm variations in costs of production and profits. Economies of scale appeared to be evident as nursery size increased from `small' to `medium' and dissipated as nursery size increased from `medium' to `large'. This indicated that the minimum economic size for HNS production appeared to be relatively low. Based on the observed relationship between labour productivity and mechanisation levels, it is possible to infer that future mechanisation of the Irish industry may provide a partial solution to labour availability problems. Although the Irish HNS industry showed a competitive cost advantage, the low added value content of the Irish product is not a reassuring sign for the industry. The research revealed that the competitive potential of the industry in the Netherlands, based on relative value-added properties, was ahead of the Irish and UK industries. However, the Netherlands has not fully succeeded in converting this potential into competitive performance in the Irish market for HNS. The Irish HNS industry remains the largest supplier of HNS to the domestic market, although HNS available from the Netherlands was seen as given better value. In order for the Irish industry to remain competitive in the future the competitive strategies which the industry adopts must be re-evaluated. Distinct market segments were observed in the Irish market, which offers potential for a focused competitive strategy, which may suit smaller specialist producers. The critical buying criteria identified and subsequent relative performance of the Irish industry should provide the information, which is required for a competitive strategy of differentiation

    Measuring Black Hole Spin in OJ287

    Full text link
    We model the binary black hole system OJ287 as a spinning primary and a non-spinning secondary. It is assumed that the primary has an accretion disk which is impacted by the secondary at specific times. These times are identified as major outbursts in the light curve of OJ287. This identification allows an exact solution of the orbit, with very tight error limits. Nine outbursts from both the historical photographic records as well as from recent photometric measurements have been used as fixed points of the solution: 1913, 1947, 1957, 1973, 1983, 1984, 1995, 2005 and 2007 outbursts. This allows the determination of eight parameters of the orbit. Most interesting of these are the primary mass of 1.841010M1.84\cdot 10^{10} M_\odot, the secondary mass 1.46108M1.46\cdot 10^{8} M_\odot, major axis precession rate 39.139^\circ.1 per period, and the eccentricity of the orbit 0.70. The dimensionless spin parameter is 0.28±0.010.28\:\pm\:0.01 (1 sigma). The last parameter will be more tightly constrained in 2015 when the next outburst is due. The outburst should begin on 15 December 2015 if the spin value is in the middle of this range, on 3 January 2016 if the spin is 0.25, and on 26 November 2015 if the spin is 0.31. We have also tested the possibility that the quadrupole term in the Post Newtonian equations of motion does not exactly follow Einstein's theory: a parameter qq is introduced as one of the 8 parameters. Its value is within 30% (1 sigma) of the Einstein's value q=1q = 1. This supports the nohairtheoremno-hair theorem of black holes within the achievable precision. We have also measured the loss of orbital energy due to gravitational waves. The loss rate is found to agree with Einstein's value with the accuracy of 2% (1 sigma).Comment: 12 pages, 4 figures, IAU26

    Vortex Pinball Under Crossed AC Drives in Superconductors with Periodic Pinning Arrays

    Full text link
    Vortices driven with both a transverse and a longitudinal AC drive which are out of phase are shown to exhibit a novel commensuration-incommensuration effect when interacting with periodic substrates. For different AC driving parameters, the motion of the vortices forms commensurate orbits with the periodicity of the pinning array. When the commensurate orbits are present, there is a finite DC critical depinning threshold, while for the incommensurate phases the vortices are delocalized and the DC depinning threshold is absent.Comment: 4 pages, 4 postscript figure

    Nonorientable spacetime tunneling

    Get PDF
    Misner space is generalized to have the nonorientable topology of a Klein bottle, and it is shown that in a classical spacetime with multiply connected space slices having such a topology, closed timelike curves are formed. Different regions on the Klein bottle surface can be distinguished which are separated by apparent horizons fixed at particular values of the two angular variables that eneter the metric. Around the throat of this tunnel (which we denote a Klein bottlehole), the position of these horizons dictates an ordinary and exotic matter distribution such that, in addition to the known diverging lensing action of wormholes, a converging lensing action is also present at the mouths. Associated with this matter distribution, the accelerating version of this Klein bottlehole shows four distinct chronology horizons, each with its own nonchronal region. A calculation of the quantum vacuum fluctuations performed by using the regularized two-point Hadamard function shows that each chronology horizon nests a set of polarized hypersurfaces where the renormalized momentum-energy tensor diverges. This quantum instability can be prevented if we take the accelerating Klein bottlehole to be a generalization of a modified Misner space in which the period of the closed spatial direction is time-dependent. In this case, the nonchronal regions and closed timelike curves cannot exceed a minimum size of the order the Planck scale.Comment: 11 pages, RevTex, Accepted in Phys. Rev.

    Optical investigation of the charge-density-wave phase transitions in NbSe3NbSe_{3}

    Full text link
    We have measured the optical reflectivity R(ω)R(\omega) of the quasi one-dimensional conductor NbSe3NbSe_{3} from the far infrared up to the ultraviolet between 10 and 300 KK using light polarized along and normal to the chain axis. We find a depletion of the optical conductivity with decreasing temperature for both polarizations in the mid to far-infrared region. This leads to a redistribution of spectral weight from low to high energies due to partial gapping of the Fermi surface below the charge-density-wave transitions at 145 K and 59 K. We deduce the bulk magnitudes of the CDW gaps and discuss the scattering of ungapped free charge carriers and the role of fluctuations effects

    Numerical Solutions of ideal two-fluid equations very closed to the event horizon of Schwarzschild black hole

    Full text link
    The 3+1 formalism of Thorne, Price and Macdonald has been used to derive the linear two-fluid equations describing transverse and longitudinal waves propagating in the two-fluid ideal collisionless plasmas surrounding a Schwarzschild black hole. The plasma is assumed to be falling in radial direction toward the event horizon. The relativistic two-fluid equations have been reformulate, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon. Here a WKB approximation is used to derive the local dispersion relation for these waves and solved numerically for the wave number k.Comment: 16 pages, 15 figures. arXiv admin note: text overlap with arXiv:0902.3766, arXiv:0807.459

    On the warp drive space-time

    Get PDF
    In this paper the problem of the quantum stability of the two-dimensional warp drive spacetime moving with an apparent faster than light velocity is considered. We regard as a maximum extension beyond the event horizon of that spacetime its embedding in a three-dimensional Minkowskian space with the topology of the corresponding Misner space. It is obtained that the interior of the spaceship bubble becomes then a multiply connected nonchronal region with closed timelike curves and that the most natural vacuum allows quantum fluctuations which do not induce any divergent behaviour of the re-normalized stress-energy tensor, even on the event (Cauchy) chronology horizon. In such a case, the horizon encloses closed timelike curves only at scales close to the Planck length, so that the warp drive satisfies the Ford's negative energy-time inequality. Also found is a connection between the superluminal two-dimensional warp drive space and two-dimensional gravitational kinks. This connection allows us to generalize the considered Alcubierre metric to a standard, nonstatic metric which is only describable on two different coordinate patchesComment: 7 pages, minor comment on chronology protection added, RevTex, to appear in Phys. Rev.

    Focusing and the Holographic Hypothesis

    Get PDF
    The ``screen mapping" introduced by Susskind to implement 't Hooft's holographic hypothesis is studied. For a single screen time, there are an infinite number of images of a black hole event horizon, almost all of which have smaller area on the screen than the horizon area. This is consistent with the focusing equation because of the existence of focal points. However, the {\it boundary} of the past (or future) of the screen obeys the area theorem, and so always gives an expanding map to the screen, as required by the holographic hypothesis. These considerations are illustrated with several axisymmetric static black hole spacetimes.Comment: 8 pages, plain latex, 5 figures included using psfi

    Hawking Spectrum and High Frequency Dispersion

    Get PDF
    We study the spectrum of created particles in two-dimensional black hole geometries for a linear, hermitian scalar field satisfying a Lorentz non-invariant field equation with higher spatial derivative terms that are suppressed by powers of a fundamental momentum scale k0k_0. The preferred frame is the ``free-fall frame" of the black hole. This model is a variation of Unruh's sonic black hole analogy. We find that there are two qualitatively different types of particle production in this model: a thermal Hawking flux generated by ``mode conversion" at the black hole horizon, and a non-thermal spectrum generated via scattering off the background into negative free-fall frequency modes. This second process has nothing to do with black holes and does not occur for the ordinary wave equation because such modes do not propagate outside the horizon with positive Killing frequency. The horizon component of the radiation is astonishingly close to a perfect thermal spectrum: for the smoothest metric studied, with Hawking temperature TH0.0008k0T_H\simeq0.0008k_0, agreement is of order (TH/k0)3(T_H/k_0)^3 at frequency ω=TH\omega=T_H, and agreement to order TH/k0T_H/k_0 persists out to ω/TH45\omega/T_H\simeq 45 where the thermal number flux is O(1020O(10^{-20}). The flux from scattering dominates at large ω\omega and becomes many orders of magnitude larger than the horizon component for metrics with a ``kink", i.e. a region of high curvature localized on a static worldline outside the horizon. This non-thermal flux amounts to roughly 10\% of the total luminosity for the kinkier metrics considered. The flux exhibits oscillations as a function of frequency which can be explained by interference between the various contributions to the flux.Comment: 32 pages, plain latex, 16 figures included using psfi

    Incommensuration Effects and Dynamics in Vortex Chains

    Full text link
    We examine the motion of one-dimensional (1D) vortex matter embedded in a 2D vortex system with weak pinning using numerical simulations. We confirm the conjecture of Matsuda et al. [Science 294, 2136 (2001)] that the onset of the temperature induced motion of the chain is due to an incommensuration effect of the chain with the periodic potential created by the bulk vortices. In addition, under an applied driving force we find a two stage depinning transition, where the initial depinning of the vortex chain occurs through soliton like pulses. When an ac drive is added to the dc drive, we observe phase locking of the moving vortex chain.Comment: 4 pages, 4 postscript figure
    corecore