5,241 research outputs found

    Locating the magnetospheric ring current

    Get PDF
    Protons are studied in the global depression of the earth's horizontal magnetic field. It is shown that 10 to 100 keV protons dominate ring current energetics in two preferred regions of cyclotron instability, which serve as stable trapping boundaries for ring current protons. The only apparent means of removing this stably trapped belt of particles are considered to be by charge exchange interactions, or by outward expansion of the plasmapause to erode the ring current. Both of these processes require about two days, which is the characteristic decay period of the main phase depression. Questions whose answers are necessary to formulate a quantitative theory of geomagnetic storms which relates main phase depression to solar wind parameters are included

    Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field

    Get PDF
    Unstable growth rate of unducted whistler waves propagating at angle to geomagnetic fiel

    Parton Distributions

    Full text link
    I discuss our current understanding of parton distributions. I begin with the underlying theoretical framework, and the way in which different data sets constrain different partons, highlighting recent developments. The methods of examining the uncertainties on the distributions and those physical quantities dependent on them is analysed. Finally I look at the evidence that additional theoretical corrections beyond NLO perturbative QCD may be necessary, what type of corrections are indicated and the impact these may have on the uncertainties.Comment: Invited talk at "XXI International Symposium on Lepton and Photon Interactions at High Energies," (Fermilab, Chicago, August 2003). 12 pages, 21 figure

    Results of B0s → CP eigenstates at Belle

    Get PDF
    We report the measurement of the absolute branching fraction for B0s → J/ψ φ, for B0s → J/ψ K+K− and a determination of the s-wave contribution in the φ mass range as well as a first observation of B0s → J/ψ η and B0s → J/ψ η'. These results are based on a 121 fb−1 data sample collected with the Belle detector at the KEK-B asymmetric e+e− collider near the Υ(5S) resonance

    Event Horizon Deformations in Extreme Mass-Ratio Black Hole Mergers

    Get PDF
    We study the geometry of the event horizon of a spacetime in which a small compact object plunges into a large Schwarzschild black hole. We first use the Regge-Wheeler and Zerilli formalisms to calculate the metric perturbations induced by this small compact object, then find the new event horizon by propagating null geodesics near the unperturbed horizon. A caustic is shown to exist before the merger. Focusing on the geometry near the caustic, we show that it is determined predominantly by large-l perturbations, which in turn have simple asymptotic forms near the point at which the particle plunges into the horizon. It is therefore possible to obtain an analytic characterization of the geometry that is independent of the details of the plunge. We compute the invariant length of the caustic. We further show that among the leading-order horizon area increase, half arises from generators that enter the horizon through the caustic, and the rest arises from area increase near the caustic, induced by the gravitational field of the compact object.Comment: 23 pages, 14 figure

    Mitochondrial Dna Replacement Versus Nuclear Dna Persistence

    Full text link
    In this paper we consider two populations whose generations are not overlapping and whose size is large. The number of males and females in both populations is constant. Any generation is replaced by a new one and any individual has two parents for what concerns nuclear DNA and a single one (the mother) for what concerns mtDNA. Moreover, at any generation some individuals migrate from the first population to the second. In a finite random time TT, the mtDNA of the second population is completely replaced by the mtDNA of the first. In the same time, the nuclear DNA is not completely replaced and a fraction FF of the ancient nuclear DNA persists. We compute both TT and FF. Since this study shows that complete replacement of mtDNA in a population is compatible with the persistence of a large fraction of nuclear DNA, it may have some relevance for the Out of Africa/Multiregional debate in Paleoanthropology

    Shell sources as a probe of relativistic effects in neutron star models

    Get PDF
    A perturbing shell is introduced as a device for studying the excitation of fluid motions in relativistic stellar models. We show that this approach allows a reasonably clean separation of radiation from the shell and from fluid motions in the star, and provides broad flexibility in the location and timescale of perturbations driving the fluid motions. With this model we compare the relativistic and Newtonian results for the generation of even parity gravitational waves from constant density models. Our results suggest that relativistic effects will not be important in computations of the gravitational emission except possibly in the case of excitation of the neutron star on very short time scales.Comment: 16 pages LaTeX with 6 eps figures; submitted to Phys. Rev.

    Gravitating Fluxbranes

    Get PDF
    We consider the effect that gravity has when one tries to set up a constant background form field. We find that in analogy with the Melvin solution, where magnetic field lines self-gravitate to form a flux-tube, the self-gravity of the form field creates fluxbranes. Several exact solutions are found corresponding to different transverse spaces and world-volumes, a dilaton coupling is also considered.Comment: 14 pages, 5 figure

    On the Solution to the "Frozen Star" Paradox, Nature of Astrophysical Black Holes, non-Existence of Gravitational Singularity in the Physical Universe and Applicability of the Birkhoff's Theorem

    Full text link
    Oppenheimer and Snyder found in 1939 that gravitational collapse in vacuum produces a "frozen star", i.e., the collapsing matter only asymptotically approaches the gravitational radius (event horizon) of the mass, but never crosses it within a finite time for an external observer. Based upon our recent publication on the problem of gravitational collapse in the physical universe for an external observer, the following results are reported here: (1) Matter can indeed fall across the event horizon within a finite time and thus BHs, rather than "frozen stars", are formed in gravitational collapse in the physical universe. (2) Matter fallen into an astrophysical black hole can never arrive at the exact center; the exact interior distribution of matter depends upon the history of the collapse process. Therefore gravitational singularity does not exist in the physical universe. (3) The metric at any radius is determined by the global distribution of matter, i.e., not only by the matter inside the given radius, even in a spherically symmetric and pressureless gravitational system. This is qualitatively different from the Newtonian gravity and the common (mis)understanding of the Birkhoff's Theorem. This result does not contract the "Lemaitre-Tolman-Bondi" solution for an external observer.Comment: 8 pages, 4 figures, invited plenary talk at "The first Galileo-Xu Guangqi conference", Shanghai, China, 2009. To appear in International Journal of Modern Physics D (2010

    Components of the gravitational force in the field of a gravitational wave

    Full text link
    Gravitational waves bring about the relative motion of free test masses. The detailed knowledge of this motion is important conceptually and practically, because the mirrors of laser interferometric detectors of gravitational waves are essentially free test masses. There exists an analogy between the motion of free masses in the field of a gravitational wave and the motion of free charges in the field of an electromagnetic wave. In particular, a gravitational wave drives the masses in the plane of the wave-front and also, to a smaller extent, back and forth in the direction of the wave's propagation. To describe this motion, we introduce the notion of `electric' and `magnetic' components of the gravitational force. This analogy is not perfect, but it reflects some important features of the phenomenon. Using different methods, we demonstrate the presence and importance of what we call the `magnetic' component of motion of free masses. It contributes to the variation of distance between a pair of particles. We explicitely derive the full response function of a 2-arm laser interferometer to a gravitational wave of arbitrary polarization. We give a convenient description of the response function in terms of the spin-weighted spherical harmonics. We show that the previously ignored `magnetic' component may provide a correction of up to 10 %, or so, to the usual `electric' component of the response function. The `magnetic' contribution must be taken into account in the data analysis, if the parameters of the radiating system are not to be mis-estimated.Comment: prints to 29 pages including 9 figures, new title, additional explanations and references in response to referee's comments, to be published in Class. Quant. Gra
    • …
    corecore