1,722 research outputs found

    Black hole holography and mean field evolution

    Get PDF
    Holographic theories representing black holes are expected to exhibit quantum chaos. We argue if the laws of quantum mechanics are expected to hold for observers inside such black holes, then such holographic theories must have a mean field approximation valid for typical black hole states, and for timescales approaching the scrambling time. Using simple spin models as examples, we examine the predictions of such an approach for observers inside black holes, and more speculatively inside cosmological horizons.Comment: 11 pages, 5 figure

    Quantum information erasure inside black holes

    Get PDF
    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.Comment: 20 pages, 3 figures, some minor correction

    Taking the Temperature of a Black Hole

    Full text link
    We use the global embedding of a black hole spacetime into a higher dimensional flat spacetime to define a local temperature for observers in free fall outside a static black hole. The local free-fall temperature remains finite at the event horizon and in asymptotically flat spacetime it approaches the Hawking temperature at spatial infinity. Freely falling observers outside an AdS black hole do not see any high-temperature thermal radiation even if the Hawking temperature of such black holes can be arbitrarily high.Comment: latex, 14 pages, 4 figures, v3: added references, matches published versio

    D-Branes and Physical States

    Full text link
    States obtained by projecting boundary states, associated with D-branes, to fixed mass-level and momentum generically define non-trivial cohomology classes. For on-shell states the cohomology is the standard one, but when the states are off-shell the relevant cohomology is defined using a BRST operator with ghost zero modes removed. The zero momentum cohomology falls naturally into multiplets of SO(D1,1)SO(D-1,1). At the massless level, a simple set of D-brane configurations generates the full set of zero-momentum states of standard ghost number, including the discrete states. We give a general construction of off-shell cohomology classes, which exhibits a non-trivial interaction between left and right movers that is not seen in on-shell cohomology. This includes, at higher mass levels, states obtained from typical D-brane boundary states as well as states with more intricate ghost dependence.Comment: 22 pages, harvmac, no figure
    corecore